STOCHASTIC
BLENDING

Chris Wyman

6, 2016; Anaheim, CA



TRANSPARENCY IS HARD

> Work fits in the context of “order independent transparency”

N 7 oA 7 Fpsasis

> In real time, transparency is hard



TRANSPARENCY IS HARD

> Work fits in the context of “order independent transparency”

PN ( VL P e

> In real time, transparency is hard

> Why? Existing algorithms:
> Not in same rendering pass as opaque
> Interacts in complex ways with other effects (e.g., AA)
> (Some) greedily use memory

> Often use complex locking and atomics



TRANSPARENCY IS HARD

> Work fits in the context of “order independent transparency”

= 4R o

> In real time, transparency is hard A

> Why? Existing algorithms:

> Not in same rendering pass as opaque

> Interacts in complex ways with other effects (e.g., AA)
> (Some) greedily use memory

> Often use complex locking and atomics

> Takeaway: -

> Current solutions not ideal; many minimize use of transparency g



WHAT’S THE PROBLEM?

» [Porter and Duff 84] outlined humerous common compositing operations

> The “over” operator, using multiplicative blending, describes most real interactions:
Cresult = QQCO + (1 — OLO)OLICI

> For streaming compute, you need to sort geometry or keep all a; and ¢, around

Merge two fragments then later try to insert one in between?

n P 5. W
Incorrect O ‘err Correct Orde



WHAT’S THE PROBLEM?

> Sorting geometry in advance can fail

> May be no “correct” order for triangles \

> Keep a list of fragments per pixel (i.e., A-Buffers [Carpenter 84])
> Virtually unbounded** GPU memory

> Still need to sort fragments to apply over operator in correctly

> Not just a raster problem; affects ray tracing, too

> Unless it guarantees ray hits returned perfectly ordered

** You can define a very conservative upper bound, but it’s quite unhelpful. <ANVIDIA.



RECENT WORK: OIT CONTINUUM

* See my High Performance Graphics 2016 paper

Memory Insertion Use Alpha

Algorithm Limit Heuristic Merge Heuristic Normalize? or Coverage?
A-buffer [Car84] none always no merging no either!
Alpha Testing 1 layer if oo > thresh discard furthest no alpha
Alpha Compositing [PD84] 1 layer always over operator no alpha
Screen-Door Transparency [FGH*85] k z-samples always z-test, discard occluded no coverage
73 [1C99] k layers always merge w/closest depths no alpha
Deep Shadow Maps [LV00] k line segments always merge w/smallest error no alpha
Depth Peeling [EveOl] I layer if closest discard furthest no either®
Opacity Shadow Maps [KNO1] k bins always a-weighted sum no alpha
Density Clustering [MKBVR04] k bins always k-means clustering no alpha
k-Buffers [BCL*07] k layers always merge closest to camera no alpha
Sort-Independent Alpha Blending [Mes07] 1 layer always weighted sum no alpha
Deep Opacity Maps [ YKOS] k bins always a-weighted sum no alpha
Multi-Layer Depth Peeling [LHLWO09] k layers if in k closest discard furthest no either®
Occupancy Maps [SA09] k bins always discard if bin occupied renormalize alpha alpha
Stochastic Transparency [ESSL10] k samples stochastic z-test, discard occluded | «-weighted average coverage
Fourier Opacity Maps [JB10] k Fourier coefs always sum in Fourier domain no alpha
Adaptive Volumetric Shadow Maps [SVLL10] k layers always merge w/smallest error no alpha
Transmittance Function Maps [DGMF11] k DCT coefs always sum in DCT basis no alpha
Adaptive Transparency [SMLI11] k layers always merge w/smallest error no alpha
Hybrid Transparency [MCTB13] k layers always discard furthest a-weighted average alpha
Weighted Blended OIT [MB13] empirical func never discard all a-weighted average alpha
Multi-Layer Alpha Blending [SV 14] k layers always merge furthest no alpha
Phenomenological OIT [MM16] empirical func never discard all a-weighted average alpha



RECENT WORK: OIT CONTINUUM

* See my High Performance Graphics 2016 paper

Memory Insertion Use Alpha

Algorithm Limit Heuristic Merge Heuristic Normalize? or Coverage?
A-buffer [Car84] none always no merging no either!
Alpha Testing 1 layer if oo > thresh discard furthest no alpha
Alpha Compositing [PD84] 1 layer always over operator nQ alpha
Screen-Door Transparency [FGH*85] k z-samples always z-test, discard occluded Inter esgl)ng note coverage
73 [1C99] k layers always merge w/closest depths / no alpha
Deep Shadow Maps [LV00] k line segments always merge w/smallest erro no alpha
Depth Peeling [EveOl] I layer if closest discard furthest no either®
Opacity Shadow Maps [KNO1] k bins always o-weighted ¢ no alpha
Density Clustering [MKBVR04] k bins always k-means clyftering no alpha
k-Buffers [BCL*07] k layers always merge clogést to camera no alpha
Sort-Independent Alpha Blending [Mes07] 1 layer always weAghted sum no alpha
Deep Opacity Maps [ YKOS] k bins always “weighted sum no alpha
Multi-Layer Depth Peeling [LHLWO09] k layers if in k closest discard furthest no either®
Occupancy Maps [SA09] k bins always discard if bin occupied renormalize alpha alpha
Stochastic Transparency [ESSL10] k samples z-test, discard occluded | «-weighted average coverage
Fourier Opacity Maps [JB10] k Fourier coefs always sum in Fourier domain no alpha
Adaptive Volumetric Shadow Maps [SVLL10] k layers always merge w/smallest error no alpha
Transmittance Function Maps [DGMF11] k DCT coefs always sum in DCT basis no alpha
Adaptive Transparency [SMLI11] k layers always merge w/smallest error no alpha
Hybrid Transparency [MCTB13] k layers always discard furthest a-weighted average alpha
Weighted Blended OIT [MB13] empirical func never discard all a-weighted average alpha
Multi-Layer Alpha Blending [SV 14] k layers always merge furthest no alpha
Phenomenological OIT [MM16] empirical func never discard all a-weighted average alpha



So what is
Stochastic Layered Alpha Blending?



WHAT IS STOCHASTIC LAYERED ALPHA BLEND

> Shows how to use stochasm in a k-buffer algorithm

> |.e., allows stochastic insertion of fragments



WHAT IS STOCHASTIC LAYERED ALPHA BLEND

> Shows how to use stochasm in a k-buffer algorithm

> |.e., allows stochastic insertion of fragments

> Shows stochastic transparency = k-buffering

<ANVIDIA.



WHAT IS STOCHASTIC LAYERED ALPHA BLEND

> Shows how to use stochasm in a k-buffer algorithm

> l.e., allows stochastic insertion of fragments
> Shows stochastic transparency = k-buffering

> How?
> By providing an explicit parameter that transitions

> Stochastic transparency [Enderton 10] < hybrid transparency [Maule 13]




To Understand:
Start With Stochastic Transparency



WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

> Stochastically cover a « k samples



WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample
> Stochastically cover a « k samples

> Let’s look at an example pixel with 16x MSAA

<ANVIDIA.



WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample
> Stochastically cover a « k samples
1.0 :
> Let’s look at an example pixel with 16x MSAA

1.0
oo

Set 8 samples to red; depth test each

> First: draw red fragment, z = 0.5, a = 0.5

<ANVIDIA.



WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample
> Stochastically cover a « k samples
1.0 PN
> Let’s look at an example pixel with 16x MSAA

0.7 0.7

0.7 n

> First: draw red fragment, z = 0.5, a = 0.5
0.7
> Second: draw blue fragment, z=0.7, a = 0.5

Set 8 samples to blue; depth test each

<ANVIDIA.



WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample

B -
-

» Stochastically cover a « k samples

> Let’s look at an example pixel with 16x MSAA

> (MSAA pattern simplified for display)
> First: draw red fragment, z=0.5,a=0.5
> Second: draw blue fragment, z=0.7,a=0.5

> Third: draw green fragment, z = 0.3, a = 0.5

Set 8 samples to green; depth test each

18 <INVIDIA.



WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample

> Stochastically cover a « k samples

> Let’s look at an example pixel with 16x MSAA
> (MSAA pattern simplified for display)

> First: draw red fragment, z=0.5,a=0.5

» Second: draw blue fragment, z=0.7,a = 0.5

» Third: draw green fragment, z = 0.3, a = 0.5

> Fourth: draw yellow fragment,z=0.9,a=1.0 Set 16 samples to yellow; depth test each

19 <INVIDIA.



WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample

.

» Stochastically cover a « k samples

> Let’s look at an example pixel with 16x MSAA

> (MSAA pattern simplified for display)
> First: draw red fragment, z=0.5,a=0.5
» Second: draw blue fragment, z=0.7,a = 0.5

» Third: draw green fragment, z = 0.3, a = 0.5

> Fourth: draw yellow fragment, z = 0.9, a = 1.0

» 2"d pass accum. color using this as depth oracle

20 <ANVIDIA.



OBSERVATIONS

» Can lose surfaces (like yellow one)

> But it still converges; surface loss is stochastic

21 <ANVIDIA.



OBSERVATIONS

» Can lose surfaces (like yellow one)

> But it still converges; surface loss is stochastic

» Loss worse if nearby surfaces almost opaque

» Could easily lose blue surface

27 <ANVIDIA.



OBSERVATION

Can lose surfaces (like yellow one)

But it still converges; surface loss is stochastic

Loss worse if nearby surfaces almost opaque
Could easily lose blue surface

Also noticed in my experiments

» Dashboard and seat noisier with high alpha than low!

7

Note: Even uses stratified sampling! m



OBSERVATIONS

> Can lose surfaces (like yellow one)

> But it still converges; surface loss is stochastic

» Loss worse if nearby surfaces almost opaque
- Could easily lose blue surface
> Also noticed in my experiments

» Dashboard and seat noisier with high alpha than low!
» Seems wasteful to store 8 copies of z = 0.3 **

> Why not store one copy of z = 0.3 and a coverage mask?

** Glossing over some details here; feel free to ask later. 24 SNVIDIA



OBSERVATIONS

> Can lose surfaces (like yellow one)

> But it still converges; surface loss is stochastic

> Loss worse if nearby surfaces almost opaque
» Could easily lose blue surface
> Also noticed in my experiments

» Dashboard and seat noisier with high alpha than low!

» Seems wasteful to store 8 copies of z = 0.3 **

> Why not store one copy of z = 0.3 and a coverage mask?

> Implicitly layered — stores (up to) 16 surfaces per pixel (for 16x MSAA)

> Also wasteful to store just 3 layers in a structure that can hold 16
75 <ANVIDIA.



Stochastic Layered Alpha Blending (SLAB)



WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

» An explicit k-layered algorithm with stoc. transparency’s characteristics




WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

» An explicit k-layered algorithm with stoc. transparency’s characteristics

> Memory: store k layers, each with depth and b-bit coverage mask
> Insertion: probabllistically insert fragments into per-pixel lists

> Merging: if >k layers, simply discard the furthest

<ANVIDIA.



WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

» An explicit k-layered algorithm with stoc. transparency’s characteristics

> Memory: store k layers, each with depth and b-bit coverage mask
> Insertion: probabllistically insert fragments into per-pixel lists

> Merging: if > k layers, simply discard the furthest

> |dentical results to k spp stoc. transparency, ifk 2 b

> But can independently change values of k and b

<ANVIDIA.



WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

» An explicit k-layered algorithm with stoc. transparency’s characteristics

> Memory: store k layers, each with depth and b-bit coverage mask
> Insertion: probabllistically insert fragments into per-pixel lists

» Merging: If >k layers, simply discard the furthest

> |dentical results to k spp stoc. transparency, ifk 2 b

» But can independently change values of k and b
» Useful since stoc. transp. rarely stores k surfaces in a k-sample buffer

> Also can explicitly increase b much further — reduce noise on existing layers

<ANVIDIA.



WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Coverage Mask Depth
» Our same example from before:
> First: draw red fragment, z = 0.5, a = 0.5 - - 0.5
Ay

siahe




WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

» Our same example from before:
> First: draw red fragment, z = 0.5, a = 0.5

» Second: draw blue fragment, z = 0.7, a = 0.5

Coverage Mask Depth

Ay e 0.5
oy <
'7~ >

'

siahe




WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Depth

Coverage Mask

» Our same example from before:
> First: draw red fragment, z = 0.5, a = 0.5 03
» Second: draw blue fragment, z=0.7, a = 0.5
> Third: draw green fragment, z = 0.3, a = 0.5 o2
0.7 |”
v

<ANVIDIA.



WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Coverage Mask Depth
> Our same example from before:
> First: draw red fragment, z = 0.5, a = 0.5 0.3
» Second: draw blue fragment, z =0.7,a=0.5
> Third: draw green fragment, z = 0.3, a = 0.5 o2
Q
> Fourth: draw yellow fragment, z=0.9, a = 1.0 E
0.7
0.9

\ 4

SANVIDIA.



WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Coverage Mask

> Our same example from before:

> First: draw red fragment, z = 0.5, a = 0.5

» Second: draw blue fragment, z =0.7,a=0.5
> Third: draw green fragment, z = 0.3, a = 0.5
> Fourth: draw yellow fragment, z = 0.9, a=1.0
» Layers get inserted only if not occluded

> Adds stochasm, if masks randomly chosen

> Different random masks might keep this Iayera

Depth
0.3
0.5
)
@
0.7 |”
0.9

\ 4

<ANVIDIA.



WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

> Our same example from before:

> First: draw red fragment, z = 0.5, a = 0.5

» Second: draw blue fragment, z =0.7,a=0.5
> Third: draw green fragment, z = 0.3, a = 0.5
> Fourth: draw yellow fragment, z = 0.9, a=1.0
» Layers get inserted only if not occluded

» Adds stochasm, if masks randomly chosen

> Different random masks might keep this layer

> If k = 2, layers beyond 2" get discarded

Coverage Mask

Depth

0.3

0.5

siahe

0.7

0.9

\ 4

SANVIDIA.



ADJUSTING PARAMETERS

Coverage Mask

» Alm to reduce noise

> One way: avoid discarding layers that impact color

siahe




ADJUSTING PARAMETERS

_ _ Coverage Mask Depth
> Aim to reduce noise
> One way: avoid discarding layers that impact color 0.3
> How to increase chance to store yellow frag?
0.5
-
v
@
(0]
0.7
0.9
A\ 4

SANVIDIA.



ADJUSTING PARAMETERS

Coverage Mask

» Aim to reduce noise
> One way: avoid discarding layers that impact color Ay O
> How to increase chance to store yellow frag? =

> Increase number of bits in coverage mask

siahe

<ANVIDIA.



ADJUSTING PARAMETERS

Coverage Mask Depth
> Aim to reduce noise
» One way: avoid discarding layers that impact color g 0.3
> How to increase chance to store yellow frag?
> Increase number of bits in coverage mask 0.5
> Larger coverage masks — lower noise g
%
> What happens as # coverage bits increases? 0.7
ey (.9

<ANVIDIA.



ADJUSTING PARAMETERS

_ _ Coverage Mask Depth
> Aim to reduce noise
> One way: avoid discarding layers that impact color Ay 0.3
> How to increase chance to store yellow frag?
> Increase number of bits in coverage mask 0.5
—
» Larger coverage masks — lower noise <
o 0.7 g
- What happens as # coverage bits increases? l ;
Starts to behave as alpha
s (.9

> Interesting to ask:

» Can we stochastically insert fragments using alpha?

<ANVIDIA.



SLAB USING IMPLICIT COVERAGE

> Let’'s compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B,

<ANVIDIA.



SLAB USING IMPLICIT COVERAGE

> Let’'s compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B,

Hidden if none of these get
covered by bits in bitmask B

<ANVIDIA.



SLAB USING IMPLICIT COVERAGE

> Let’'s compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B,

.. ’.\ Naive random sampling:
. . Covered with probability ag

Uncovered with prob (1 - ag)

<ANVIDIA.



SLAB USING IMPLICIT COVERAGE

> Let’'s compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B,

Naive random sampling:

Covered with probability ag
Uncovered with prob (1 - ag)

All uncovered with prob: (1-ag)®

Bitmask B visible with prob: 1-(1-ag)¢

<ANVIDIA.



SLAB USING IMPLICIT COVERAGE

> Let’'s compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

ﬁB (b—ﬂA) Bitmask A
Pb(IBAuBB) =1- (1 I 7) ...
Or .

H B
Py(Ba,ap) =1 — (1 — ap)=ha)

S, = # bits covered

L,= la,b] or [a,b]
for b bits in bitmask

<ANVIDIA.



SLAB USING IMPLICIT COVERAGE

> Let’'s compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

ﬁB (b—PB4) Bitmask A
Py(Ba,Bp) =1 — (1 P 7) ...
Or _

Py(Ba ag) =1 — (1 —ap)b=Fa) " .
b (Bar ap) ? B,)‘ , B, = # bits covered
Y |

prob of leaving number of bits that IBA = [aAbJ or [CZAb]
1 bit uncovered must be uncovered . . A
for b bits in bitmask

<ANVIDIA.



SLAB USING IMPLICIT COVERAGE

» Let’'s compute an insertion probability

> Q: How about for random masks using stratified samples?

r Bitmask A
Bal(b—PBp)! .
oA <
Py(B4, PB) =+ 1 b!(Ba—BB)! if fp < ba .II
Ll if fgp > P4 B
B B

[ = # bits covered

» Based on combinatorics

» Choosing dependent probabilities so all mask bits in B are covered by A

<ANVIDIA.



WAIT! NOT USING INFINITE # BITS?

» Both equations require a number of bits b in the coverage mask

| _ Bal®=Bp)!
Py(Bar Bi) = { /(B =P
1

Py(Ba Bp) =1 — (122

using stratified random samples

using naive random samples

<ANVIDIA.



WAIT! NOT USING INFINITE # BITS?

» Both equations require a number of bits b in the coverage mask
> Can ask what happens to P, as b — o
> Turnsoutas b — oo, P, — 1

> Instead of stochastic insertion of fragments, they’re always inserted

1 iy ﬁA!(b_ﬁB)! lf ﬁB S ﬁA

Py(Ba, BB) = b!(Ba—Bp)! using stratified random samples
1 if Bz > Pa

)(b—ﬁA)

Py(Ba,Bg) =1 — (1 — %B using naive random samples

<ANVIDIA.



WAIT! NOT USING INFINITE # BITS?

» Both equations require a number of bits b in the coverage mask
> Can ask what happens to P, as b — o
> Turnsoutas b — oo, P, — 1

> Instead of stochastic insertion of fragments, they’re always inserted

» Going back to our continuum
> When b = k, SLAB is equivalent to stochastic transparency

> When b — oo, SLAB is equivalent to hybrid transparency (a variant of k-buffer)

| Stochastic Transparency [ESSL10] || |
| Hybrid Transparency [MCTB13] || k layers I always I discard furthest | o-weighted average | alpha |
| (NEW) Stochastic Layered Alpha Blending || |

k samples | stochastic z-test, discard occluded | o-weighted average | coverage |

k layers | stochastic discard furthest | o-weighted average | either* |



WAIT! NOT USING INFINITE # BITS?

» To get something between k-buffers and stoc. transp.

» Needtousek< b< o

<ANVIDIA.



WAIT! NOT USING INFINITE # BITS?

» To get something between k-buffers and stoc. transp.
» Needtouse k< b<

> Can do this with an explicit coverage mask with b random bits

<ANVIDIA.



WAIT! NOT USING INFINITE # BITS?

» To get something between k-buffers and stoc. transp.
» Needtouse k< b<

> Can do this with an explicit coverage mask with b random bits

> Can do this with an implicit coverage (i.e., alpha) using b virtual bits

<ANVIDIA.



Let’s demonstrate



FOLIAGE MAP

(From Epic’s Unreal SDK)

.'#‘ o

56 <INVIDIA.




FOLIAGE MAP

(From Epic’s Unreal SDK)

57 <ANVIDIA.




FOLIAGE MAP

(From Epic’s Unreal SDK)

BB T e T oD
”_'4"_.7,! ,'\‘lr - g A T e P

— e

#

Stoc transp, 8 spp SLAB, k=8,b=32 SLAB, k=8,b =128 SLAB, k=8,b=32 Hybrid Transparency synvibia.
using alpha




FOLIAGE MAP

(From Ep]C S Unreal SDK)

i ?’

i = 2 s ] = B
ol L e ) )
em 2 m o lm S =l - om

Stoc transp, 8 spp SLAB,k=b=8 SLAB, k=8,b=32 SLAB,k=8,b= 128 SLAB, k=8,b=32 Hybrid Transparency synvibia.
using alpha



STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=b=4 Stochastic Transparency, 4 spp

<ANVIDIA.



STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=4, b=32 Stochastic Transparency, 4 spp

<ANVIDIA.



STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=4, b=8
(using alpha rather than coverage)

Stochastic Transparency, 4 spp

<ANVIDIA.



STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=4, b=32
(using alpha rather than coverage)

Hybrid Transparency, 4 layers

<ANVIDIA.



Summary



SUMMARY

> Proposed new algorithm

» Stochastic layered alpha blending (SLAB)

<ANVIDIA.



SUMMARY

> Proposed new algorithm
» Stochastic layered alpha blending (SLAB)
> Key takeaways:
> K-buffers need not be deterministic
» Stochastic transparency and k-buffering are similar; transition via bit count
» “Stochastic” need not mean random bitmask generation
> Algorithms connecting others useful; here, allow trading noise for bias

> SLAB with alpha values can stratify samples in z (between layers)

SANVIDIA.



QUESTIONS? Paper POF:

E-mail: cwyman®@nvidia.com
Twitter: @_cwyman_

“Th Blacksmith” demo

{
Vk

;{
ko 2

7 ;‘:W’J“ A

=%y
-
A\

g
5

P
ATy

Ll 7y
"

.5 n.:. 1] : ¥ x| -

, 4 ¥ L o4 H
o | '2_ " ; BN ‘ *’-ﬁ 3; A ‘t. B ! i', : ’é N 3 £ & L 1
Stochastic SLAB SLAB Hybrid Multi-layer Ground truth

transparency k=4,b=16 transparency alpha blending (A-buffer)

4 spp using alpha 4 layers 4 layers



