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__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

Int 1 = blockldx.x ™ blockDim.x + threadldx.x;

int ] = blockldx.y * blockDim.y + threadldx.y;

If (i <N && | <N)

Cli]b] = AD]D] + BOIDL
]
CUDA Source Code

iInt main{) 3610
{ -

/f Kernel call

dim3 threadsPerBlock(16, 16);

dim3 numBlocks{N / threadsPerBlock.x, N / threadsPerBlock.y);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
]

CUDA to HIP Translation Tool 3620
HIP Kernel Launch Syntax 3720

CUDA Kernel Launch Syntax 3710

KernelName<<<GridSize, BlockSize,
sharedMemorysize,

Stream>>>(KernelArguments);

hipLaunchKernelGGL(KernelName, Gndsize,

BlockSize, SharedMemorySize, Stream,
KermelArguments);

/{ Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

int | = blockldx.x * blockDim.x + threadldx.x;

int j = blockldx.y * blockDim.y + threadldx.y;

If (i <N && ] <N)

CllDT = ADJpT + BOIDI;

} HIP Source Code
int main{) 3630
{

// Kernel invocation

dim3 threadsPerBlock(16, 16);

dim3 numBlocks{N / threadsPerBlock.x, N / threadsPerBlock.y);,

hipLaunchKernelGGL(MatAdd, numBlocks, threadsPerBlock, 0, 0, A, B, C);
;

FIG. 37
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GRID-BASED LIGHT SAMPLING FOR RAY
TRACING APPLICATIONS

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional

Application No. 63/068,906, titled “RESAMPLING TECH-
NIQUE FOR RESERVOIR-BASED LIGHTING,” filed

Aug. 21, 2020, the entire contents of which 1s incorporated
herein by reference.

FIELD

At least one embodiment pertains to computer graphics.
For example, at least one embodiment pertains to processors
or computing systems used to render graphical images using
various novel techmiques described herein.

BACKGROUND

The handling of lights 1n computer graphics can consume
significant amounts of time, memory, processing power, and
other computing resources. This 1s particular true for cases
where a large number of lights are included 1n a scene, and
for techniques, including but not necessarily limited to ray
tracing, that are intended to produce graphical scenes of high
visual quality. Techmiques for handling lights 1n computer
graphics may therefore be improved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates an example of a system employing a
orid-based reservoir of resampled lights to render a virtual
scene, 1n accordance with at least one embodiment;

FI1G. 2 illustrates an example of a process for rendering a
virtual scene using a grid-based reservoir of resampled
lights, 1n accordance with at least one embodiment;

FIG. 3 illustrates an example of a process for generating,
a grid-based reservoir of resampled lights, in accordance
with at least one embodiment;

FIG. 4 1llustrates an example of a process for rendering a
pixel of a virtual scene, based at least 1n part on a grid-based
reservoir of resampled lights, 1n accordance with at least one
embodiment;

FIG. 5 illustrates an example of lights 1n a virtual scene,
in accordance with at least one embodiment:

FIG. 6 1llustrates an example of light sampling, 1n accor-
dance with at least one embodiment;

FI1G. 7 illustrates an example of rendering a pixel using
lights obtained from proximate grid cells, 1n accordance
with at least one embodiment;

FIG. 8 illustrates an example of a process for rendering a
virtual scene, 1n accordance with at least one embodiment;

FIG. 9 illustrates an exemplary data center, 1n accordance
with at least one embodiment;

FIG. 10 1illustrates a processing system, in accordance
with at least one embodiment;

FIG. 11 1llustrates a computer system, in accordance with
at least one embodiment:

FIG. 12 illustrates a system, in accordance with at least
one embodiment;

FIG. 13 illustrates an exemplary integrated circuit, in
accordance with at least one embodiment;

FIG. 14 illustrates a computing system, according to at
least one embodiment;

FIG. 15 1llustrates an APU, 1n accordance with at least one
embodiment;
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FI1G. 16 illustrates a CPU, 1n accordance with at least one
embodiment;

FIG. 17 illustrates an exemplary accelerator integration
slice, 1n accordance with at least one embodiment;

FIGS. 18A and 18B 1illustrate exemplary graphics proces-
sors, 1n accordance with at least one embodiment;

FIG. 19 Allustrates a graphics core, 1n accordance with at
least one embodiment:

FI1G. 19B illustrates a GPGPU, 1n accordance with at least
one embodiment;

FIG. 20A 1illustrates a parallel processor, 1n accordance
with at least one embodiment;

FIG. 20B illustrates a processing cluster, in accordance
with at least one embodiment;

FIG. 20C 1illustrates a graphics multiprocessor, in accor-
dance with at least one embodiment;

FIG. 21 illustrates a graphics processor, 1n accordance
with at least one embodiment;

FIG. 22 1llustrates a processor, 1n accordance with at least
one embodiment;

FIG. 23 1llustrates a processor, 1n accordance with at least
one embodiment;

FIG. 24 illustrates a graphics processor core, 1 accor-
dance with at least one embodiment;

FI1G. 25 1llustrates a PPU, 1n accordance with at least one
embodiment;

FI1G. 26 illustrates a GPC, 1n accordance with at least one
embodiment;

FIG. 27 illustrates a streaming multiprocessor, 1n accor-
dance with at least one embodiment;

FIG. 28 illustrates a software stack of a programming
platform, 1n accordance with at least one embodiment;

FIG. 29 illustrates a CUDA implementation of a software
stack of FIG. 28, in accordance with at least one embodi-
ment;

FIG. 30 illustrates a ROCm implementation of a software
stack of FIG. 28, 1in accordance with at least one embodi-
ment;

FIG. 31 illustrates an OpenCL implementation of a soft-
ware stack of FIG. 28, in accordance with at least one
embodiment;

FIG. 32 illustrates software that 1s supported by a pro-
gramming platform, 1n accordance with at least one embodi-
ment,

FIG. 33 illustrates compiling code to execute on program-
ming platforms of FIGS. 28-31, in accordance with at least
one embodiment;

FIG. 34 illustrates i greater detail compiling code to
execute on programming platforms of FIGS. 28-31, 1n
accordance with at least one embodiment;

FIG. 35 illustrates translating source code prior to com-
piling source code, 1n accordance with at least one embodi-
ment;

FIG. 36A 1llustrates a system configured to compile and
execute CUDA source code using diflerent types of process-
ing units, in accordance with at least one embodiment;

FIG. 36B 1illustrates a system configured to compile and
execute CUDA source code of FIG. 36A using a CPU and
a CUDA-enabled GPU, 1n accordance with at least one
embodiment;

FIG. 36C 1illustrates a system configured to compile and

execute CUDA source code of FIG. 36 A using a CPU and
a non-CUDA -enabled GPU, in accordance with at least one

embodiment;

FIG. 37 illustrates an exemplary kernel translated by
CUDA-to-HIP translation tool of FIG. 36C, 1n accordance
with at least one embodiment;
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FI1G. 38 1llustrates non-CUDA-enabled GPU of FIG. 36C
in greater detail, in accordance with at least one embodi-

ment,

FIG. 39 illustrates how threads of an exemplary CUDA
orid are mapped to different compute units of FIG. 38, 1n
accordance with at least one embodiment; and

FIG. 40 1llustrates how to migrate existing CUDA code to
Data Parallel C++ code, 1in accordance with at least one
embodiment.

DETAILED DESCRIPTION

In an example, a system comprises one or more proces-
sors that render a graphical depiction of a virtual area 1n a
scene that includes a number of lights. There may be many
such lights 1n a scene, potentially numbering in the tens,
hundreds, or even thousands. To render the depiction, the
one or more processors select a subset of lights from among
all of the lights 1n a virtual area. The lights selected for
inclusion 1n this subset are selected based on their respective
contribution to the lighting 1n a particular subdivision of the
virtual area. This selection process 1s also stochastic, and
may for example be based on a stochastic model of each
light’s contribution to the particular subdivision.

In at least one embodiment, the subdivision 1s a cell of an
implied grid-based structure over the virtual area. As such,
a subset of lights may be selected for each cell, based on a
stochastic model which considers each light’s respective
contribution to the cell, while still basing at least part of a
light’s selection on some random {factor.

In at least one embodiment, information describing the
selected lights 1s stored 1n a data structure that corresponds
to the respective subdivisions ol the wvirtual area. For
example, 1n at least one embodiment, the data structure
comprises records that each correspond to a cell 1n a virtual
orid superimposed over the virtual area.

In at least one embodiment, rendering a pixel within a
particular subdivision 1s done by selecting lights from the
subdivisions, such as grid cells, that surround and/or encom-
pass the pixel. For example, 1n at least one embodiment, a
number of lights are selected from subdivisions including or
immediately surrounding the point, using a stochastic tech-
nique such as resampled importance sampling (“RIS”).
Larger numbers of lights may be taken from subdivisions
closer to the pixel, and fewer lights from subdivisions more
distant.

In the preceding and following description, numerous
specific details are set forth to provide a more thorough
understanding of at least one embodiment. However, it will
be apparent to one skilled in the art that the inventive
concepts may be practiced without one or more of these
specific details.

FIG. 1 1llustrates an example of a system employing a
orid-based structure of resampled lights to render a virtual
scene, 1n accordance with at least one embodiment. In the
example 100 of FIG. 1, a computing device 102 generates
graphical output to drive a display on screen 108.

In at least one embodiment, computing device 102 gen-
erates graphical output using a graphics pipeline 104 and a
graphics card 106. In at least one embodiment, a graphics
card 106 comprises one or more processors, such as graphics
processing units. In at least one embodiment, graphics
pipeline 104 comprises software, hardware, or combinations
of software and hardware to generate graphical output. A
graphics pipeline 104 may generate graphical output accord-
ing to a multi-stage process, such as a process comprising
the stages 110-118 depicted within graphics pipeline 104 in
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FIG. 1. Although the stages 110-118 are depicted 1n FIG. 1
as a sequence, embodiments may omit some of the depicted
stages 110-118, perform some of the operations 110-118 1n
an order other than what 1s depicted, such as in parallel, or
include stages 1n addition to those depicted in FIG. 1.
Accordingly, the order depicted in FIG. 1 should not be
construed in a manner which would limit potential embodi-
ments to only those that conform to the depicted order.

In at least one embodiment, a graphics pipeline 104
comprises software, hardware, or a combination of hardware
and soltware to implement a multiple-stage process for
converting application data to graphical data suitable (with
or without certain post-pipeline steps) for display by screen
108. For example, graphics pipeline 104 may generate a
frame of video data that can then be converted to a signal to
drive the display of the frame on screen 108. In at least one
embodiment, these stages may include an application stage
110, geometry stage 112, transformation stage 114, lighting
and shading stage 116, and rasterization and texturization
stage 118.

In at least one embodiment, one or more of the stages
110-118 utilizes a grid-based data structure to incorporate
lighting eflects into the rendering of a virtual scene or area.
Records 1n this data structure may correspond to cells of a
virtual grid that 1s superimposed over the virtual area.

In at least one embodiment, a virtual scene or area 1s a
computer-generated environment, such as a landscape,
building, playing field, or other area, as defined by a data
structure, graphical assets, and other data. For example, 1n at
least one embodiment, a virtual scene comprises a wireframe
model of a landscape, various textures and objects residing
within the scene, and so forth. The virtual scene may further
comprise lights placed at various positions within the scene.

In some cases, a large number of such lights may be
present, which can present a number of challenges when
rendering the virtual scene. Handling many lights 1s a
dificult problem 1n computer graphics, particularly for algo-
rithms that are based on ray tracing. For example, one
approach to rendering a virtual scene would be to evaluate
all light sources 1n the scene for each shaded point. However,
increasing the light count would also increase the number
and complexity of rays that are to be traced, and thereby also
increase the time, computing resources, and complexity of
the rendering process.

In at least one embodiment, a subset of lights are selected
based on an at least partially random process, and the
selected subset 1s stored 1n a record of a data structure that
corresponds to a subdivision, or cell, of a virtual area. For
example, 1n at least one embodiment, lights are stochasti-
cally selected according to a probability that is proportional
to the importance of a given light’s contribution to a
subdivision of the wvirtual area. Information about the
selected lights 1s then stored 1n a grid-based data structure,
where the information may be readily accessed during
rendering. Using this approach, computation tends to be
focused on evaluating more relevant light sources. Here, a
grid-based data structure refers to a data structure that has
records, or some other structure or organization that allows
light information to be associated with a particular cell of a
orid, or other subdivision. For convemence in explanation,
the term grid-based data structure may also be used to refer
to data structures that allow light information to be stored for
the subdivisions that result from other techniques for sub-
dividing a virtual area.

In at least one embodiment, a light refers to a virtual
source of 1llumination. A light may be associated with
properties including a position of the light within a virtual
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scene and an intensity value. For example, a light may be
associated with an x, y, z value indicating the light’s position
within the virtual scene, and a value indicating how bright
the light 1s. A light may also be associated with additional
properties, such as parameters that describe 1ts color, difiu-
sion pattern, and so forth.

In at least one embodiment, grid 110 1s defined in three-
dimensions over a virtual scene or area. In at least one
embodiment, grid 110 1s defined by subdividing a virtual
scene or area 1to equal cubical portions. Each portion, or
subdivision, may sometimes be referred to as a cell of the
or1d.

In at least one embodiment, a data structure 1s generated
to comprise a number of records, each corresponding to a
cell m the gnd. In at least one embodiment, the grid is
coarsely defined so that each cell covers many pixels. This
coarseness may be beneficial 1n that the per-frame cost of
populating the structure 1s much less than would be the case
if the grid were defined, for example, as just a few pixels per
cell.

In at least one embodiment, the records corresponding to
orid cells are populated with lights that are selected based on
a stochastic evaluation of the contributions of lights 1n the
virtual scene to the area covered by the grid. In at least one
embodiment, N lights are stored in each cell when the grnid
1s populated.

In at least one embodiment, stages 110-118 of graphics
pipeline 104 utilize the populated gnid structure to render the
virtual scene. In at least one embodiment, the computing
device 102 renders a pixel by sampling lights from the grid.
In at least one embodiment, this 1s done by finding cells
proximate to the point whose corresponding pixel i1s to be
rendered, and sampling some number of lights from these
cells. In at least one embodiment, the eight grid cells closest
to the point are considered proximate, and lights are sampled
from these cells. In at least one embodiment, the cell which
contains the point to be rendered 1s considered proximate. In
at least one embodiment, a cell containing the point to be
rendered, and the cells adjacent to this cell, are considered
proximate. In at least one embodiment, up to M lights are
sampled from the proximate cells, taking a variable number
of lights from each cell. For example, mn at least one
embodiment, the number of lights taken from each cell 1s
inversely proportional to the cell’s distance from the point to
be rendered.

FI1G. 2 illustrates an example of a process for rendering a
virtual scene using a grid-based structure of resampled
lights, 1n accordance with at least one embodiment.

Although the example process 200 1s depicted as a
sequence ol operations, 1t will be appreciated that, 1n
embodiments, the depicted operations may be altered in
various ways, and that some operations may be omitted,
reordered, or performed in parallel with other operations,
except where an order 1s explicitly stated or logically
implied, such as when the input from one operation depends
upon the output of another operation.

The operations depicted by FIG. 2 may be performed by
a system, such as the system 100 depicted in FIG. 1,
comprising at least one processor and a memory with stored
instructions that, 1n response to being executed by the at
least one processor, cause the system to perform the depicted
operations. In at least one embodiment, the operations are
performed by a combination of hardware and software,
where said hardware includes one or more APUs, CPUs,
GPUs, PPUs, GPGPUs, parallel processors, processing clus-
ters, graphics processors, multiprocessors, and so forth as
depicted by the various FIGS. herein. In at least one embodi-
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ment, said software comprises libraries such as any of
CUDA, OpenGL, OpenlLC, ROCm, and may also include
operating system software.

At 202, 1n at least one embodiment, the system defines a
three-dimensional grid which encompasses the virtual area.
In at least one embodiment, said definition comprises simply
initializing memory to contain parameters that define a grid,
such as a number of cells, a number of pixels per cells,
coordinates of the cells, or mappings between pixel coordi-
nates.

At 204, i at least one embodiment, the system iterates
over each gnid cell in the defined grnd. In at least one
embodiment, the system iterates over a subset of each grid
cell. In at least one embodiment, said iteration comprises
preparing to perform operations described by elements 206-
208.

At 206, 1n at least one embodiment, the system performs
stochastic evaluation of the contributions of lights 1n the
virtual area to the grid cell that 1s the subject of the current
iteration.

At 208, 1n at least one embodiment, the system selects N
of these lights. The N lights are selected based on a sto-
chastic evaluation. In at least one embodiment, this com-
prises selecting a light based on a random factor, such as a
randomly generated number. In at least one embodiment, the
stochastic evaluation 1s done according to a probability
distribution, so that lights with the greatest contribution to
the current grid cell are selected with the highest probabaility,
and lights with the least contributions are selected with the
lowest probability.

At 210, i at least one embodiment, the system stores
information indicative of the N lights 1n a record that
corresponds to the cell. In at least one embodiment, this
information comprises information about the light’s inten-
sity. Other imnformation that may be stored includes color,
diffusion pattern, and so forth.

At 212, 1n at least one embodiment, a scene 1s rendered
using the lights stored 1n the various grid cells. In at least one
embodiment, rendering the scene comprises selecting one or
more lights from a grid cell proximate to a pixel, and
rendering the pixel using the selected lights. Embodiments
of rendering a scene are described 1n more detail herein,
including with respect to FIG. 4.

FIG. 3 illustrates an example of a process for generating
a grid-based structure of resampled lights, in accordance
with at least one embodiment.

Although the example process 300 1s depicted as a
sequence ol operations, 1t will be appreciated that, 1n
embodiments, the depicted operations may be altered 1n
various ways, and that some operations may be omitted,
reordered, or performed in parallel with other operations,
except where an order 1s explicitly stated or logically
implied, such as when the input from one operation depends
upon the output of another operation.

The operations depicted by FIG. 3 may be performed by
a system, such as the system 100 depicted in FIG. 1,
comprising at least one processor and a memory with stored
instructions that, in response to being executed by the at
least one processor, cause the system to perform the depicted
operations. In at least one embodiment, the operations are
performed by a combination of hardware and soitware,
where said hardware includes one or more APUs, CPUs,
GPUs, PPUs, GPGPUs, parallel processors, processing clus-
ters, graphics processors, multiprocessors, and so forth as
depicted by the various FIGS. herein. In at least one embodi-
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ment, said software comprises libraries such as any of
CUDA, OpenGL, OpenlLC, ROCm, and may also include
operating system software.

At 302, in at least one embodiment, the system builds a
probability density function for the lights, based on the
distance of a light from the cell in question, and the light’s
intensity. In at least one embodiment, this probability den-
sity function describes a light’s potential contribution to
lighting within a particular grid cell.

At 304, 1n at least one embodiment, the system iterates
over cells 1 the grid.

At 306, 1n at least one embodiment, the system stochas-
tically samples a light from the pool of lights, using a
combination of resampled importance sampling (“RIS”) and
weighted reservoir sampling (“WRS”).

At 308, 1n at least one embodiment, the system selects N
lights based on N independent executions of the RIS func-
tion. In at least one embodiment, a GPUs or other parallel
processors are used to perform the independent executions.
For example, 1n at least one embodiment, N GPU threads are
executed, each of which selects a corresponding one of the
N lights.

At 310, i at least one embodiment, the respective RIS
functions are executing using weighted reservoir sampling.
In at least one embodiment, WRS 1s used by the system to
stochastically select up to N lights from M evaluated can-
didate lights.

At 312, 1n at least one embodiment, information i1ndica-
tive of each of the selected N lights 1s stored 1n a record
corresponding to the cell. This information may comprise
data indicating the lights’ respective intensity, color, diffu-
sion pattern, and so forth. The information stored may
depend upon the needs and capabilities of the pixel render-
Ing Process.

In at least one embodiment, the stored information also
includes weight values calculated by the RIS function for
cach of the N lights. This may improve efliciency of sub-
sequent selection of the lights during pixel rendering.

FI1G. 4 illustrates an example of a process for rendering a
pixel of a virtual scene, based at least 1n part on a grid-based
structure of resampled lights, in accordance with at least one
embodiment.

Although the example process 400 1s depicted as a
sequence ol operations, 1t will be appreciated that, 1in
embodiments, the depicted operations may be altered 1n
vartous ways, and that some operations may be omitted,
reordered, or performed in parallel with other operations,
except where an order i1s explicitly stated or logically
implied, such as when the input from one operation depends
upon the output of another operation.

The operations depicted by FIG. 4 may be performed by
a system, such as the system 100 depicted in FIG. 1,
comprising at least one processor and a memory with stored
instructions that, in response to being executed by the at
least one processor, cause the system to perform the depicted
operations. In at least one embodiment, the operations are
performed by a combination of hardware and software,
where said hardware includes one or more APUs, CPUs,
GPUs, PPUs, GPGPUs, parallel processors, processing clus-
ters, graphics processors, multiprocessors, and so forth as
depicted by the various FIGS. herein. In at least one embodi-
ment, said software comprises libraries such as any of
CUDA, OpenGL, OpenlL.C, ROCm, and may also include
operating system software.

At 402, 1n at least one embodiment, the system selects or
otherwise determines a point or pixel 1n the virtual scene to
render. In at least one embodiment, this comprises simple
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iteration over the points to be rendered, although other
techniques may be used to determine an order or priority for
rendering the pixels that will make up the graphical depic-
tion of the virtual scene.

At 404, 1n at least one embodiment, the system 1dentifies
orid cells that are proximate to the point to be rendered. In
at least one embodiment, one or more cells encompassing or
around the point are i1dentified. In at least one embodiment,
a volume of eight cells 1s selected, centered to the extent
possible on the point to be rendered.

At 406, 1n at least one embodiment, the system 1terates
over each of the selected cells, referring to those selected at
404. For each iteration, the system selects a number of points
from the current cell as described 1n relation to the following
clements 408 and 410.

At 408, 1n at least one embodiment, the system determines
a distance between the point and the cell that 1s the subject
of the current 1teration.

At 410, 1n at least one embodiment, the system selects up
to K lights from the cell, where K 1s inversely proportional
to the distance between the point and the cell.

At 412, 1n at least one embodiment, the point i1s rendered
using the light information from the lights selected from
cach cell by operations related to element 408 and 410.

In at least one embodiment, rendering pixels near edges of
a cell 1s adjusted by using additional stochastic or determi-
native factors to reduce or prevent artifacts in the rendered
image. For example, a dithering process may be used 1n
conjunction with element 404 above, so that for a pixel near
a cell border, the set of grid cells from which lights are
selected 1s made to vary based on some randomized element
Or noise.

FIG. 5 illustrates an example of lights 1n a virtual area, 1n
accordance with at least one embodiment. In the example
500 of FIG. 5, a virtual area 502 1s a three-dimensional area
depicted from a top view and a side view. A terrain 508 is
included in the depicted example of a virtual area 502, but
a virtual area 502 can include or omit a variety of features,
such as the depicted terrain 508, as well as other features not
depicted in the FIG., such as characters, obstacles, walls, and
other objects.

In at least one embodiment, lights 510 are also included
in the virtual area 502, at various positions within the area
502. These lights 310 emit illumination which may be
factored into the rendering of a computer-generated image
based on the virtual area 502. In some cases and embodi-
ments, there may be many such lights 510, such as tens,
hundreds, or even thousands of lights 310. Lights in these
quantities may be challenging, or even impractical, to use
with some approaches to handling lights 1n computer graph-
ICS.

In at least one embodiment, a grid definition 3504 1s
applied to virtual area 502. FIG. 5 depicts virtual area 502
with an example grid superimposed onto 1t, from top and
side views. As depicted in FIG. 5, the virtual area 502 1s
subdivided by the gnid definition 504 into a number of
umiform portions, such as the depicted grid cells 506.

FIG. 6 illustrates an example of light sampling, 1n accor-
dance with at least one embodiment. In the example 600 of
FIG. 6, a grid 602 has been superimposed over a virtual area,
such as the virtual area 502 depicted 1n FIG. 5. Various lights
610-614 are positioned in the virtual area. These may also
correspond to the lights 510 depicted in FIG. 5.

In at least one embodiment, a stochastic process 1s used to
select, for each grid cell, up to N lights. Information about
the selected lights 1s then stored 1n a record that corresponds
to the respective grid cell. For example, with respect to FIG.
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6, a value of N=2 might be set. Then, for a grid cell 608, two
lights 612, 614 might be selected at random (or based on
some randomized factor) from among all of the lights in the
virtual scene. Information about these selected lights might
then be stored 1n a record 620 that corresponds to the grid
cell 608. The record 620 may be part of a data structure 604
that 1s used to store sampled lights for each grid cell defined
for the virtual area. A similar process might be repeated for
a second grid cell 608, and a corresponding record 622
stored 1n data structure 604. In at least one embodiment, the
data structure 604 1s sparse, 1n that it may not necessarily
contain records for each cell at any one time. For example,
in at least one embodiment, data structure 604 1s wholly or
partially regenerated each frame so that a record of sampled
lights exists for each grid cell that 1s proximate to a point that
1s to be rendered, but cells not proximate to any such point
are not rendered.

In at least one embodiment, as depicted 1n FIG. 6, an
implicit uniform grid i1s used to accelerate evaluation of
many lights, 1n a manner that adapts well to various parallel
processing architectures and devices, including graphics
processing units. In at least one embodiment, a uniform grid
1s an 1mplicit three dimensional structure comprising cells,
cach of which may correspond to a record 620, 622 1n a data
structure 604, that 1s to store up to N lights. A grid may be
defined to cover the area of the wvirtual world where a
rendering algorithm 1s expected to sample a light. In at least
one embodiment, the grid 1s coarse so that each cell covers
many pixels, and a per-frame cost of populating data struc-
ture 604 1s reduced.

In at least one embodiment, a record 1s filled with N lights
based on stochastic evaluation of the contribution of the
lights to the area covered by a corresponding grid cell.
Therefore, after construction, each record may hold N lights
whose contribution 1s expected to be high for the area
covered by the corresponding grid cell. In at least one
embodiment, no explicit clipping step 1s performed, and
consequently each light may therefore occur 1n any of the
cells. However, the probability of including a light that
contributes significantly to area covered by the cell 1s higher
than the probability of mcluding a light which contributes
less.

In at least one embodiment, contribution of a light to a cell
1s evaluated by building a probability density function based
on distance of the light from the cell and 1ts intensity. In at
least one embodiment, resampled 1mportance sampling 1s
used with weighted reservoir sampling to stochastically
sample a light from the pool of all lights. For each cell, N
lights are selected and stored by N independent executions
of a RIS function. In at least one embodiment, this 1s suitable
tfor GPU implementation, as each execution can be per-
tormed 1n parallel, by using a number of threads equal to the
capacity of the grid. Using this approach, the data structure
604 can be built quickly, 1n parallel, on a per-frame basis. In
at least one embodiment, a RIS implementation uses WRS
to stochastically select and store one light from up to M
evaluated candidates. Using WRS, embodiments may avoid
building a CDF and iterating over candidates twice. In at
least one embodiment, weights calculated by RIS are stored
with each light, and subsequently used in conjunction with
retrieval of a light from the data structure 604 corresponding,
to the gnd.

In at least one embodiment, use of RIS and WRS 1s such
that each light may be stored multiple times 1n the data
structure 604, even within the same record. This approach 1s
flexible 1n terms of a performance-to-quality ratio. When
there are low numbers of lights, the grid is filled repeatedly
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with the same lights, which 1n turn contribute to the whole
virtual areca. For a high number of lights, this approach
prefers those lights that contribute most to a given grid cell
area, while tending to omit lights with low contribution. In
at least one embodiment, the capacity of a grid, the area that
the grid covers, and the number of lights per cell are
parameters that can be fine-tuned to achieve a desired level
of performance and quality.

In at least one embodiment, a grid 1s constructed incre-
mentally, by repeatedly subdividing a wvirtual area into
equally sized sub-cells. For example, the virtual area may be
initially subdivided 1nto eight equally sized sub-cells, such
as 1 a 2x2x2 arrangement. Each of these cells may then be
subdivided in the same fashion. Using this may yield a grid
possessing better representational qualities.

In at least one embodiment, once a grid 1s mnitialized, a
certain number of lights are retained 1n the records 620, 622
of the data structure 604 between frames. For example, once
certain lights have been 1dentified as significant for a given
cell, 1t’s likely they will also contribute significantly to the
next frame. Reusing these lights can result 1n a grid whose
representational quality 1s improved over time.

In at least one embodiment, data structure 604 1s 1mple-
mented with an underlying structure that facilitates eflicient
access to the light information for a given cell. For example,
rather than using a structure that that would require a
hierarchical traversal in order to access light information
from a given area, the data structure 604 can be implemented
using a three-dimensional array or similar structure that can
be accessed based on grid position. In at least one embodi-
ment, the grid cells are of uniform size, which allows the x,
y, and z coordinates of a pixel to be readily converted to
indices 1n a three-dimensional array.

FIG. 7 illustrates an example of rendering a pixel using
lights obtaimned from records corresponding to proximate
orid cells, 1n accordance with at least one embodiment. In
the example 700 of FIG. 7, a graphical image of virtual area
702 1s to be rendered, using a grid-based data structure such
as the data structure 604 1llustrated 1n FIG. 6.

In at least one embodiment, to render a point 704, grid
cells proximate to point 704 are first identified. In FIG. 7,
these are depicted as proximate cells 706. In at least one
embodiment, proximate cells are those that include the point
704, and those cells within a threshold distance away. In at
least one embodiment, eight nearby cells are selected. For
example, 1n at least one embodiment, a 2x2x2 “cube” of
cells 1s selected so as to encompass the point 704. Accord-
ingly, proximate cells are those that conform to a critenia for
selecting cells that surround or are near to the point 704 that
1s to be rendered.

In at least one embodiment, after identifying the proxi-
mate cells, up to M lights are sampled, using an RIS
algorithm, from the proximate cells. In at least one embodi-
ment, a different number of lights 1s taken from each cell. In
at least one embodiment, the number of lights taken from
cach cell 1s based on the cell’s distance from the point 704.
In at least one embodiment, the number of lights taken to
render the point 704 1s inversely proportional to the cell’s
distance from the point 704. By using these techniques, a
point 1n the center of the cell 1s likely to take most lights
from that cell, but a light near the boundary of two grid cells
will tend to take more lights from both. In at least one
embodiment, the RIS function in this step uses weights
associated with each light that were stored in the corre-
sponding record when the data structure was constructed, as
described 1n relation to FIG. 6. In at least one embodiment,
a GPU or other parallel processor 1s used, as sampling of
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light for each shaded point can be performed as an inde-
pendent execution of a RIS function. For example, each ray
can sample one light from the grid independently of others.

FIG. 8 1llustrates an example of a process for rendering a
virtual scene, 1n accordance with at least one embodiment.

Although the example process 800 1s depicted as a
sequence ol operations, 1t will be appreciated that, in
embodiments, the depicted operations may be altered in
various ways, and that some operations may be omitted,
reordered, or performed in parallel with other operations,
except where an order i1s explicitly stated or logically
implied, such as when the input from one operation depends
upon the output of another operation.

The operations depicted by FIG. 8 may be performed by
a system, such as the system 100 depicted in FIG. 1,
comprising at least one processor and a memory with stored
instructions that, 1n response to being executed by the at
least one processor, cause the system to perform the depicted
operations. In at least one embodiment, the operations are
performed by a combination of hardware and software,
where said hardware includes one or more APUs, CPUs,
GPUs, PPUs, GPGPUs, parallel processors, processing clus-
ters, graphics processors, multiprocessors, and so forth as

depicted by the various FIGS. herein. In at least one embodi-
ment, said software comprises libraries such as any of
CUDA, OpenGL, OpenlL.C, ROCm, and may also include
operating system software.

At 802, 1n at least one embodiment, the system selects a
light from among the lights 1n a virtual area, using a
stochastic model of the light’s contribution to a subdivision
of the virtual area. At 804, in at least one embodiment, the
system stores mformation indicative of the light in a record
that corresponds to the subdivision. These operations may be
performed 1n accordance with wvarious embodiments
described herein, such as those described in relation to
FIGS. 2-3.

At 806, 1n at least one embodiment, the system deter-
mines, during rendering, that the subdivision 1s proximate to
a pixel that 1s to be rendered. For example, in at least one
embodiment, the subdivision, 1n which lighting information
was stored 1n operations associated with element 804, 1s
determined to be one of the subdivisions from which light-
ing imformation should be obtained. For example, 1n at least
one embodiment, the subdivision 1s one of a number of grnid
cells including or nearby the pixel that 1s to be rendered.

At 808, 1n at least one embodiment, the light 1s selected
from among those lights stored in the record that corre-
sponds to the subdivision. As described 1n relation to FIG. 4,
embodiments may select a certain number of lights at
random from each subdivision. The number of lights taken
from the subdivision may be inverse to the distance of the
cell from the subdivision, so that more lights are selected
from subdivisions closest to the relevant pixel.

At 810, 1n at least one embodiment, the pixel 1s rendered
using the mnformation that was stored in the record, and that
pertains to the selected light, or that pertains to each of the
selected lights 11 more than one was selected by operations
performed 1n relation to element 808.

Data Center

FI1G. 9 illustrates an exemplary data center 900, 1n accor-
dance with at least one embodiment. In at least one embodi-
ment, data center 900 includes, without limitation, a data
center 1nirastructure layer 910, a framework layer 920, a
software layer 930 and an application layer 940.
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In at least one embodiment, as shown 1n FIG. 9, data
center infrastructure layer 910 may include a resource
orchestrator 912, grouped computing resources 914, and
node computing resources (“node C.R.s”) 916(1)-916(IN),
where “N” represents any whole, positive integer. In at least
one embodiment, node C.R.s 916(1)-916(N) may include,
but are not limited to, any number of central processing units
(“CPUs™) or other processors (including accelerators, field
programmable gate arrays (“FPGASs”), graphics processors,
etc.), memory devices (e.g., dynamic read-only memory),
storage devices (e.g., solid state or disk drives), network
iput/output (“NW 1/O”") devices, network switches, virtual
machines (“VMs”), power modules, and cooling modules,
etc. In at least one embodiment, one or more node C.R.s
from among node C.R.s 916(1)-916(N) may be a server
having one or more of above-mentioned computing
resources.

In at least one embodiment, grouped computing resources
914 may include separate groupings of node C.R.s housed
within one or more racks (not shown), or many racks housed
in data centers at various geographical locations (also not
shown). Separate groupings of node C.R.s within grouped
computing resources 914 may include grouped compute,
network, memory or storage resources that may be config-
ured or allocated to support one or more workloads. In at
least one embodiment, several node C.R.s including CPUs
or processors may grouped within one or more racks to
provide compute resources to support one or more work-
loads. In at least one embodiment, one or more racks may
also 1nclude any number of power modules, cooling mod-
ules, and network switches, in any combination.

In at least one embodiment, resource orchestrator 912
may configure or otherwise control one or more node C.R.s
916(1)-916(N) and/or grouped computing resources 914. In
at least one embodiment, resource orchestrator 912 may
include a software design infrastructure (“SDI”) manage-
ment entity for data center 900. In at least one embodiment,
resource orchestrator 912 may include hardware, software or
some combination thereof.

In at least one embodiment, as shown 1n FIG. 9, frame-
work layer 920 includes, without limitation, a job scheduler
932, a configuration manager 934, a resource manager 936
and a distributed file system 938. In at least one embodi-
ment, framework layer 920 may include a framework to
support software 952 of software layer 930 and/or one or
more application(s) 942 of application layer 940. In at least
one embodiment, soltware 952 or application(s) 942 may
respectively include web-based service soltware or applica-
tions, such as those provided by Amazon Web Services,
Google Cloud and Microsoit Azure. In at least one embodi-
ment, framework layer 920 may be, but 1s not limited to, a
type of free and open-source software web application
framework such as Apache Spark™ (hereinaiter “Spark™)
that may utilize distributed file system 938 for large-scale
data processing (e.g., “big data”). In at least one embodi-
ment, job scheduler 932 may include a Spark driver to
facilitate scheduling of workloads supported by various
layers of data center 900. In at least one embodiment,
configuration manager 934 may be capable of configuring
different layers such as software layer 930 and framework
layer 920, including Spark and distributed file system 938
for supporting large-scale data processing. In at least one
embodiment, resource manager 936 may be capable of
managing clustered or grouped computing resources
mapped to or allocated for support of distributed file system
938 and job scheduler 932. In at least one embodiment,
clustered or grouped computing resources may include
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grouped computing resource 914 at data center inirastruc-
ture layer 910. In at least one embodiment, resource man-

ager 936 may coordinate with resource orchestrator 912 to
manage these mapped or allocated computing resources.

In at least one embodiment, software 952 included 1n
software layer 930 may include software used by at least
portions of node C.R.s 916(1)-916(N), grouped computing,
resources 914, and/or distributed file system 938 of frame-
work layer 920. One or more types of software may include,
but are not limited to, Internet web page search software,
¢-mail virus scan soltware, database software, and streaming
video content soltware.

In at least one embodiment, application(s) 942 included in
application layer 940 may include one or more types of
applications used by at least portions of node C.R.s 916(1)-
916(N), grouped computing resources 914, and/or distrib-
uted file system 938 of framework layer 920. In at least one
or more types of applications may include, without limita-
tion, CUDA applications.

In at least one embodiment, any of configuration manager
934, resource manager 936, and resource orchestrator 912
may implement any number and type of self-modifying
actions based on any amount and type of data acquired 1n
any technically feasible fashion. In at least one embodiment,
self-modifying actions may relieve a data center operator of
data center 900 from making possibly bad configuration
decisions and possibly avoiding underutilized and/or poor
performing portions of a data center.

Computer-Based Systems

The following FIGS. set forth, without limitation, exem-
plary computer-based systems that can be used to implement
at least one embodiment.

FIG. 10 1llustrates a processing system 1000, in accor-
dance with at least one embodiment. In at least one embodi-
ment, processing system 1000 includes one or more proces-
sors 1002 and one or more graphics processors 1008, and
may be a single processor desktop system, a multiprocessor
workstation system, or a server system having a large
number of processors 1002 or processor cores 1007. In at
least one embodiment, processing system 1000 1s a process-
ing platform 1ncorporated within a system-on-a-chip
(“SoC”) mtegrated circuit for use 1n mobile, handheld, or
embedded devices.

In at least one embodiment, processing system 1000 can
include, or be mcorporated within a server-based gaming
platform, a game console, a media console, a mobile gaming,
console, a handheld game console, or an online game
console. In at least one embodiment, processing system
1000 1s a mobile phone, smart phone, tablet computing
device or mobile Internet device. In at least one embodi-
ment, processing system 1000 can also include, couple with,
or be integrated within a wearable device, such as a smart
watch wearable device, smart eyewear device, augmented
reality device, or virtual reality device. In at least one
embodiment, processing system 1000 1s a television or set
top box device having one or more processors 1002 and a
graphical interface generated by one or more graphics
processors 1008.

In at least one embodiment, one or more processors 1002
cach include one or more processor cores 1007 to process
instructions which, when executed, perform operations for
system and user soitware. In at least one embodiment, each
of one or more processor cores 1007 1s configured to process
a specific instruction set 1009. In at least one embodiment,
istruction set 1009 may facilitate Complex Instruction Set
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Computing (“CISC”), Reduced Instruction Set Computing
(“RISC”), or computing via a Very Long Instruction Word
(“VLIW?”). In at least one embodiment, processor cores
1007 may each process a different instruction set 1009,
which may include instructions to facilitate emulation of
other 1nstruction sets. In at least one embodiment, processor
core 1007 may also include other processing devices, such
as a digital signal processor (“DSP”).

In at least one embodiment, processor 1002 includes
cache memory (‘cache™) 1004. In at least one embodiment,
processor 1002 can have a single internal cache or multiple
levels of internal cache. In at least one embodiment, cache
memory 1s shared among various components of processor
1002. In at least one embodiment, processor 1002 also uses
an external cache (e.g., a Level 3 (“L3”) cache or Last Level
Cache (*LLC”)) (not shown), which may be shared among
processor cores 1007 using known cache coherency tech-
niques. In at least one embodiment, register file 1006 1s
additionally included in processor 1002 which may include
different types of registers for storing diflerent types of data
(e.g., integer registers, floating point registers, status regis-
ters, and an 1instruction pointer register). In at least one
embodiment, register file 1006 may include general-purpose
registers or other registers.

In at least one embodiment, one or more processor(s)
1002 are coupled with one or more mterface bus(es) 1010 to
transmit communication signals such as address, data, or
control signals between processor 1002 and other compo-
nents 1n processing system 1000. In at least one embodiment
interface bus 1010, 1n one embodiment, can be a processor
bus, such as a version of a Direct Media Interface (“DMI”)
bus. In at least one embodiment, interface bus 1010 1s not
limited to a DMI bus, and may include one or more
Peripheral Component Interconnect buses (e.g., “PCI,” PCI
Express (“PCle”)), memory buses, or other types of inter-
face buses. In at least one embodiment processor(s) 1002
include an integrated memory controller 1016 and a plat-
form controller hub 1030. In at least one embodiment,
memory controller 1016 facilitates communication between
a memory device and other components of processing
system 1000, while platform controller hub (“PCH”) 1030
provides connections to Input/Output (“I/O’) devices via a
local 1/0 bus.

In at least one embodiment, memory device 1020 can be
a dynamic random access memory (“DRAM”) device, a
static random access memory (“SRAM”) device, flash
memory device, phase-change memory device, or some
other memory device having suitable performance to serve
as processor memory. In at least one embodiment memory
device 1020 can operate as system memory for processing
system 1000, to store data 1022 and instructions 1021 for
use when one or more processors 1002 executes an appli-
cation or process. In at least one embodiment, memory
controller 1016 also couples with an optional external graph-
ics processor 1012, which may communicate with one or
more graphics processors 1008 1n processors 1002 to per-
form graphics and media operations. In at least one embodi-
ment, a display device 1011 can connect to processor(s)
1002. In at least one embodiment display device 1011 can
include one or more of an internal display device, as 1n a
mobile electronic device or a laptop device or an external
display device attached via a display interface (e.g., Dis-
playPort, etc.). In at least one embodiment, display device
1011 can include a head mounted display (“HMD”) such as
a stereoscopic display device for use in virtual reality
(“VR”) applications or augmented reality (“AR”) applica-
tions.
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In at least one embodiment, platform controller hub 1030
enables peripherals to connect to memory device 1020 and
processor 1002 via a high-speed I/O bus. In at least one
embodiment, I/O peripherals include, but are not limited to,
an audio controller 1046, a network controller 1034, a
firmware interface 1028, a wireless transceiver 1026, touch
sensors 10235, a data storage device 1024 (e.g., hard disk
drive, tlash memory, etc.). In at least one embodiment, data
storage device 1024 can connect via a storage interface (e.g.,
SATA) or via a peripheral bus, such as PCI, or PCle. In at
least one embodiment, touch sensors 1025 can include touch
screen Sensors, pressure sensors, or fingerprint sensors. In at
least one embodiment, wireless transceiver 1026 can be a
Wi-F1 transceiver, a Bluetooth transceiver, or a mobile
network transceiver such as a 3G, 4G, or Long Term
Evolution (“LTE”) transceiver. In at least one embodiment,
firmware 1nterface 1028 enables communication with sys-
tem firmware, and can be, for example, a unified extensible
firmware mtertace (“UEFI”). In at least one embodiment,
network controller 1034 can enable a network connection to
a wired network. In at least one embodiment, a high-
performance network controller (not shown) couples with
interface bus 1010. In at least one embodiment, audio
controller 1046 1s a multi-channel high definition audio
controller. In at least one embodiment, processing system
1000 includes an optional legacy 1/O controller 1040 for
coupling legacy (e.g., Personal System 2 (*PS/2”")) devices
to processing system 1000. In at least one embodiment,
platform controller hub 1030 can also connect to one or
more Universal Serial Bus (“USB”) controllers 1042 con-
nect mput devices, such as keyboard and mouse 1043
combinations, a camera 1044, or other USB input devices.

In at least one embodiment, an instance of memory
controller 1016 and platform controller hub 1030 may be
integrated ito a discreet external graphics processor, such
as external graphics processor 1012. In at least one embodi-
ment, platform controller hub 1030 and/or memory control-
ler 1016 may be external to one or more processor(s) 1002.
For example, 1n at least one embodiment, processing system
1000 can include an external memory controller 1016 and
platiorm controller hub 1030, which may be configured as a
memory controller hub and peripheral controller hub within
a system chipset that 1s 1n communication with processor(s)
1002.

FI1G. 11 1llustrates a computer system 1100, in accordance
with at least one embodiment. In at least one embodiment,
computer system 1100 may be a system with interconnected
devices and components, an SOC, or some combination. In
at least on embodiment, computer system 1100 1s formed
with a processor 1102 that may include execution units to
execute an mstruction. In at least one embodiment, computer
system 1100 may include, without limitation, a component,
such as processor 1102 to employ execution units including
logic to perform algorithms for processing data. In at least
one embodiment, computer system 1100 may include pro-
cessors, such as PENTIUM® Processor family, Xeon™,
[tanium®, XScale™ and/or StrongARM™, [ntel® Core™,
or Intel® Nervana™ microprocessors available from Intel
Corporation of Santa Clara, California, although other sys-
tems (including PCs having other microprocessors, engi-
neering workstations, set-top boxes and like) may also be
used. In at least one embodiment, computer system 1100
may execute a version of WINDOWS’ operating system
available from Microsoit Corporation of Redmond, Wash.,
although other operating systems (UNIX and Linux for
example), embedded software, and/or graphical user inter-
faces, may also be used.
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In at least one embodiment, computer system 1100 may
be used 1n other devices such as handheld devices and
embedded applications. Some examples of handheld devices
include cellular phones, Internet Protocol devices, digital
cameras, personal digital assistants (“PDAs”), and handheld
PCs. In at least one embodiment, embedded applications
may 1include a microcontroller, a digital signal processor
(DSP), an SoC, network computers (“NetPCs”), set-top
boxes, network hubs, wide area network (“WAN"") switches,
or any other system that may perform one or more instruc-
tions.

In at least one embodiment, computer system 1100 may
include, without limitation, processor 1102 that may include,
without limitation, one or more execution units 1108 that
may be configured to execute a Compute Unified Device
Architecture (“CUDA”) (CUDA® 1s developed by NVIDIA
Corporation of Santa Clara, CA) program. In at least one
embodiment, a CUDA program 1s at least a portion of a
soltware application written 1n a CUDA programming lan-
guage. In at least one embodiment, computer system 1100 1s
a single processor desktop or server system. In at least one
embodiment, computer system 1100 may be a multiproces-
sor system. In at least one embodiment, processor 1102 may
include, without limitation, a CISC microprocessor, a RISC
microprocessor, a VLIW microprocessor, a processor imple-
menting a combination of instruction sets, or any other
processor device, such as a digital signal processor, for
example. In at least one embodiment, processor 1102 may be
coupled to a processor bus 1110 that may transmit data
signals between processor 1102 and other components 1n
computer system 1100.

In at least one embodiment, processor 1102 may include,
without limitation, a Level 1 (“L17) internal cache memory
(“‘cache”) 1104. In at least one embodiment, processor 1102
may have a single internal cache or multiple levels of
internal cache. In at least one embodiment, cache memory
may reside external to processor 1102. In at least one
embodiment, processor 1102 may also include a combina-
tion of both internal and external caches. In at least one
embodiment, a register file 1106 may store different types of
data 1n various registers including, without limitation, inte-
ger registers, floating point registers, status registers, and
instruction pointer register.

In at least one embodiment, execution unit 1108, includ-
ing, without limitation, logic to perform integer and tloating
point operations, also resides 1n processor 1102. Processor
1102 may also include a microcode (*“ucode™) read only
memory (“ROM”) that stores microcode for certain macro
instructions. In at least one embodiment, execution unit 1108
may include logic to handle a packed 1nstruction set 1109. In
at least one embodiment, by including packed instruction set
1109 1n an mstruction set of a general-purpose processor
1102, along with associated circuitry to execute 1nstructions,
operations used by many multimedia applications may be
performed using packed data 1n a general-purpose processor
1102. In at least one embodiment, many multimedia appli-
cations may be accelerated and executed more efliciently by
using full width of a processor’s data bus for performing
operations on packed data, which may eliminate a need to
transier smaller units of data across a processor’s data bus to
perform one or more operations one data element at a time.

In at least one embodiment, execution unit 1108 may also
be used 1n microcontrollers, embedded processors, graphics
devices, DSPs, and other types of logic circuits. In at least
one embodiment, computer system 1100 may include, with-
out limitation, a memory 1120. In at least one embodiment,
memory 1120 may be implemented as a DRAM device, an
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SRAM device, flash memory device, or other memory
device. Memory 1120 may store instruction(s) 1119 and/or
data 1121 represented by data signals that may be executed
by processor 1102.

In at least one embodiment, a system logic chip may be
coupled to processor bus 1110 and memory 1120. In at least
one embodiment, the system logic chip may include, without
limitation, a memory controller hub (*“MCH”) 1116, and
processor 1102 may communicate with MCH 1116 wia
processor bus 1110. In at least one embodiment, MCH 1116
may provide a high bandwidth memory path 1118 to
memory 1120 for instruction and data storage and for
storage of graphics commands, data and textures. In at least
one embodiment, MCH 1116 may direct data signals
between processor 1102, memory 1120, and other compo-
nents 1n computer system 1100 and to bridge data signals
between processor bus 1110, memory 1120, and a system
I/0 1122. In at least one embodiment, system logic chip may
provide a graphics port for coupling to a graphics controller.
In at least one embodiment, MCH 1116 may be coupled to
memory 1120 through high bandwidth memory path 1118
and graphics/video card 1112 may be coupled to MCH 1116
through an Accelerated Graphics Port (“AGP”) interconnect
1114.

In at least one embodiment, computer system 1100 may
use system I/O 1122 that 1s a proprietary hub interface bus
to couple MCH 1116 to I/O controller hub (“ICH”) 1130. In
at least one embodiment, ICH 1130 may provide direct
connections to some I/O devices via a local I/O bus. In at
least one embodiment, local I/O bus may include, without
limitation, a high-speed 1/O bus for connecting peripherals
to memory 1120, a chipset, and processor 1102. Examples
may include, without limitation, an audio controller 1129, a
firmware hub (“flash BIOS”) 1128, a wireless transceiver
1126, a data storage 1124, a legacy 1/O controller 1123
contaiming a user mput interface 1125 and a keyboard
interface, a serial expansion port 1127, such as a USB, and
a network controller 1134. Data storage 1124 may comprise
a hard disk drive, a floppy disk drive, a CD-ROM device, a
flash memory device, or other mass storage device.

In at least one embodiment, FIG. 11 illustrates a system,
which includes interconnected hardware devices or “chips.”
In at least one embodiment, FIG. 11 may illustrate an
exemplary SoC. In at least one embodiment, devices 1llus-
trated i FIG. 11 may be iterconnected with proprietary
interconnects, standardized interconnects (e.g., PCle), or
some combination thereof. In at least one embodiment, one
or more components of system 1100 are interconnected
using compute express link (“CXL”) mterconnects.

FIG. 12 illustrates a system 1200, 1n accordance with at
least one embodiment. In at least one embodiment, system
1200 1s an electronic device that utilizes a processor 1210.
In at least one embodiment, system 1200 may be, for
example and without limitation, a notebook, a tower server,
a rack server, a blade server, a laptop, a desktop, a tablet, a
mobile device, a phone, an embedded computer, or any other
suitable electronic device.

In at least one embodiment, system 1200 may include,
without limitation, processor 1210 commumcatively
coupled to any suitable number or kind of components,
peripherals, modules, or devices. In at least one embodi-
ment, processor 1210 1s coupled using a bus or interface,
such as an I°C bus, a System Management Bus (“SMBus”),
a Low Pin Count (“LPC”) bus, a Serial Peripheral Interface
(“SPI”), a High Definition Audio (*HDA™) bus, a Serial
Advance Technology Attachment (“SATA”) bus, a USB
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Transmitter (“UART™) bus. In at least one embodiment,
FIG. 12 illustrates a system which includes interconnected
hardware devices or “chips.” In at least one embodiment,
FIG. 12 may illustrate an exemplary SoC. In at least one
embodiment, devices illustrated 1n FIG. 12 may be inter-
connected with proprietary interconnects, standardized
interconnects (e.g., PCle) or some combination thereolf. In at
least one embodiment, one or more components of FIG. 12
are mterconnected using CXL 1nterconnects.

In at least one embodiment, FIG. 12 may include a display
1224, a touch screen 12235, a touch pad 1230, a Near Field
Communications unit (“NFC””) 1245, a sensor hub 1240, a
thermal sensor 1246, an Express Chipset (“EC”) 1235, a
Trusted Platform Module (*“TPM™) 1238, BIOS/firmware/
flash memory (“BIOS, FW Flash™) 1222, a DSP 1260, a
Solid State Disk (“SSD”) or Hard Disk Drive (“HDD”)
1220, a wireless local area network unit (“WLAN") 1250, a
Bluetooth unit 1252, a Wireless Wide Area Network unit
(“WWAN™) 1256, a Global Positioning System (“GPS™)
1255, a camera (“USB 3.0 camera™) 1254 such as a USB 3.0
camera, or a Low Power Double Data Rate (“LPDDR”)
memory umt (“LPDDR3”) 1215 implemented 1n, {for
example, LPDDR3 standard. These components may each
be implemented 1n any suitable manner.

In at least one embodiment, other components may be
communicatively coupled to processor 1210 through com-
ponents discussed above. In at least one embodiment, an
accelerometer 1241, an Ambient Light Sensor (“ALS”)
1242, a compass 1243, and a gyroscope 1244 may be
communicatively coupled to sensor hub 1240. In at least one
embodiment, a thermal sensor 1239, a fan 1237, a keyboard
1236, and a touch pad 1230 may be communicatively
coupled to EC 1235. In at least one embodiment, a speaker
1263, a headphones 1264, and a microphone (“mic™) 1265
may be communicatively coupled to an audio unit (*audio
codec and class d amp”) 1262, which may in turn be
communicatively coupled to DSP 1260. In at least one
embodiment, audio unit 1262 may include, for example and
without limitation, an audio coder/decoder (*codec™) and a
class D amplifier. In at least one embodiment, a SIM card
(“SIM™) 1257 may be communicatively coupled to WWAN
umt 1256. In at least one embodiment, components such as
WLAN unit 1250 and Bluetooth unmit 1252, as well as
WWAN unit 1256 may be implemented 1n a Next Genera-
tion Form Factor (“NGFEF”).

FIG. 13 illustrates an exemplary integrated circuit 1300,
in accordance with at least one embodiment. In at least one
embodiment, exemplary integrated circuit 1300 1s an SoC
that may be fabricated using one or more IP cores. In at least
one embodiment, integrated circuit 1300 includes one or
more application processor(s) 1305 (e.g., CPUs), at least one
graphics processor 1310, and may additionally include an
image processor 1315 and/or a video processor 1320, any of
which may be a modular IP core. In at least one embodiment,
integrated circuit 1300 includes peripheral or bus logic
including a USB controller 1325, a UART controller 1330,
an SPI/SDIO controller 1335, and an I°S/I°C controller
1340. In at least one embodiment, integrated circuit 1300
can include a display device 1345 coupled to one or more of
a high-definition multimedia interface (“HDMI”) controller
1350 and a mobile industry processor interface (“MIPI”)
display interface 1355. In at least one embodiment, storage
may be provided by a flash memory subsystem 1360 includ-
ing flash memory and a flash memory controller. In at least
one embodiment, a memory nterface may be provided via

a memory controller 1363 for access to SDRAM or SRAM
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memory devices. In at least one embodiment, some inte-
grated circuits additionally include an embedded security
engine 1370.

FI1G. 14 1llustrates a computing system 1400, according to
at least one embodiment; In at least one embodiment,
computing system 1400 includes a processing subsystem
1401 having one or more processor(s) 1402 and a system
memory 1404 communicating via an interconnection path
that may include a memory hub 1405. In at least one
embodiment, memory hub 1405 may be a separate compo-
nent within a chipset component or may be integrated within
one or more processor(s) 1402, In at least one embodiment,
memory hub 1405 couples with an I/O subsystem 1411 via
a communication link 1406. In at least one embodiment, I/O
subsystem 1411 includes an I/O hub 1407 that can enable
computing system 1400 to receive input from one or more
mput device(s) 1408. In at least one embodiment, I/O hub
1407 can enable a display controller, which may be included
in one or more processor(s) 1402, to provide outputs to one
or more display device(s) 1410A. In at least one embodi-
ment, one or more display device(s) 1410A coupled with I/O
hub 1407 can include a local, internal, or embedded display
device.

In at least one embodiment, processing subsystem 1401
includes one or more parallel processor(s) 1412 coupled to
memory hub 1405 via a bus or other communication link
1413. In at least one embodiment, communication link 1413
may be one of any number of standards based communica-
tion link technologies or protocols, such as, but not limited
to PCle, or may be a vendor specific communications
interface or communications fabric. In at least one embodi-
ment, one or more parallel processor(s) 1412 form a com-
putationally focused parallel or vector processing system
that can include a large number of processing cores and/or
processing clusters, such as a many integrated core proces-
sor. In at least one embodiment, one or more parallel
processor(s) 1412 form a graphics processing subsystem that
can output pixels to one of one or more display device(s)
1410A coupled via I/O Hub 1407. In at least one embodi-
ment, one or more parallel processor(s) 1412 can also
include a display controller and display interface (not
shown) to enable a direct connection to one or more display
device(s) 1410B.

In at least one embodiment, a system storage unit 1414
can connect to IO hub 1407 to provide a storage mechanism
for computing system 1400. In at least one embodiment, an
I/0O switch 1416 can be used to provide an 1nterface mecha-
nism to enable connections between I/O hub 1407 and other
components, such as a network adapter 1418 and/or wireless
network adapter 1419 that may be integrated into a platform,
and various other devices that can be added via one or more
add-1n device(s) 1420. In at least one embodiment, network
adapter 1418 can be an Fthernet adapter or another wired
network adapter. In at least one embodiment, wireless net-
work adapter 1419 can include one or more of a Wi-Fi,
Bluetooth, NFC, or other network device that includes one
or more wireless radios.

In at least one embodiment, computing system 1400 can
include other components not explicitly shown, including
USB or other port connections, optical storage drives, video
capture devices, and the like, that may also be connected to
[/O hub 1407. In at least one embodiment, communication
paths interconnecting various components in FIG. 14 may
be implemented using any suitable protocols, such as PCI
based protocols (e.g., PCle), or other bus or point-to-point
communication 1nterfaces and/or protocol(s), such as
NVLink high-speed interconnect, or interconnect protocols.
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In at least one embodiment, one or more parallel proces-
sor(s) 1412 incorporate circuitry optimized for graphics and
video processing, including, for example, video output cir-
cuitry, and constitutes a graphics processing unit (“GPU”).
In at least one embodiment, one or more parallel
processor(s) 1412 incorporate circuitry optimized for gen-
eral purpose processing. In at least embodiment, compo-
nents of computing system 1400 may be integrated with one
or more other system elements on a single integrated circuit.
For example, in at least one embodiment, one or more

parallel processor(s) 1412, memory hub 1403, processor(s)
1402, and I/O hub 1407 can be integrated into an SoC

integrated circuit. In at least one embodiment, components
of computing system 1400 can be integrated into a single
package to form a system 1n package (*“SIP”) configuration.
In at least one embodiment, at least a portion of the
components of computing system 1400 can be integrated
into a multi-chip module (“MCM”), which can be 1ntercon-
nected with other multi-chip modules mto a modular com-
puting system. In at least one embodiment, I/O subsystem
1411 and display devices 1410B are omitted from comput-
ing system 1400.

Processing Systems

The following FIGS. set forth, without limitation, exem-
plary processing systems that can be used to implement at
least one embodiment.

FIG. 15 illustrates an accelerated processing unit (“APU™)
1500, 1n accordance with at least one embodiment. In at least
one embodiment, APU 1500 1s developed by AMD Corpo-
ration of Santa Clara, CA In at least one embodiment, APU
1500 can be configured to execute an application program,
such as a CUDA program. In at least one embodiment, APU
1500 includes, without limitation, a core complex 1510, a
graphics complex 1540, fabric 1560, I/O interfaces 1570,
memory controllers 1580, a display controller 1592, and a
multimedia engine 1594. In at least one embodiment, APU
1500 may include, without limitation, any number of core
complexes 1510, any number of graphics complexes 1550,
any number of display controllers 1592, and any number of
multimedia engines 1594 1n any combination. For explana-
tory purposes, multiple instances of like objects are denoted
herein with reference numbers identifying the object and
parenthetical numbers 1dentifying the instance where
needed.

In at least one embodiment, core complex 1510 1s a CPU,
graphics complex 1540 1s a GPU, and APU 1500 i1s a
processing unit that itegrates, without limitation, 1510 and
1540 onto a single chip. In at least one embodiment, some
tasks may be assigned to core complex 1510 and other tasks
may be assigned to graphics complex 1540. In at least one
embodiment, core complex 1510 1s configured to execute
main control software associated with APU 1500, such as an
operating system. In at least one embodiment, core complex
1510 1s the master processor of APU 1500, controlling and
coordinating operations ol other processors. In at least one
embodiment, core complex 1510 issues commands that
control the operation of graphics complex 1540. In at least
one embodiment, core complex 1510 can be configured to
execute host executable code derived from CUDA source
code, and graphics complex 1540 can be configured to
execute device executable code derived from CUDA source
code.

In at least one embodiment, core complex 1510 includes,
without limitation, cores 1520(1)-1520(4) and an L3 cache
1530. In at least one embodiment, core complex 1510 may
include, without limitation, any number of cores 1520 and
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any number and type of caches 1n any combination. In at
least one embodiment, cores 1520 are configured to execute
istructions of a particular struction set architecture
(“ISA”). In at least one embodiment, each core 1520 1s a
CPU core.

In at least one embodiment, each core 1520 1includes,
without limitation, a fetch/decode umit 1522, an integer

execution engine 1524, a floating point execution engine
1526, and an .2 cache 1528. In at least one embodiment,
fetch/decode unit 1522 fetches instructions, decodes such
instructions, generates micro-operations, and dispatches
separate micro-instructions to iteger execution engine 1524
and floating point execution engine 1526. In at least one
embodiment, fetch/decode unit 1522 can concurrently dis-
patch one micro-mstruction to integer execution engine
1524 and another micro-instruction to floating point execu-
tion engine 1526. In at least one embodiment, integer
execution engine 1524 executes, without limitation, integer
and memory operations. In at least one embodiment, tloating
point engine 1526 executes, without limitation, floating
point and vector operations. In at least one embodiment,
tetch-decode unit 1522 dispatches micro-instructions to a
single execution engine that replaces both integer execution
engine 1524 and floating point execution engine 1526.

In at least one embodiment, each core 1520(;), where 1 1s
an integer representing a particular istance of core 1520,
may access L2 cache 1528(7) included 1n core 1520(7). In at
least one embodiment, each core 1520 included 1n core
complex 1510(;), where j 1s an integer representing a par-
ticular 1nstance of core complex 1510, 1s connected to other
cores 1520 included 1n core complex 1510(;) via L3 cache
1530(j) included 1n core complex 1510(;). In at least one
embodiment, cores 1520 included 1n core complex 1510(7),
where 1 15 an integer representing a particular instance of
core complex 1510, can access all of L3 cache 1530(;)
included 1n core complex 1510(;). In at least one embodi-
ment, L3 cache 1530 may include, without limitation, any
number of slices.

In at least one embodiment, graphics complex 1540 can
be configured to perform compute operations 1 a highly-
parallel fashion. In at least one embodiment, graphics com-
plex 1540 1s configured to execute graphics pipeline opera-
tions such as draw commands, pixel operations, geometric
computations, and other operations associated with render-
ing an image to a display. In at least one embodiment,
graphics complex 1540 1s configured to execute operations
unrelated to graphics. In at least one embodiment, graphics
complex 1540 1s configured to execute both operations
related to graphics and operations unrelated to graphics.

In at least one embodiment, graphics complex 1540
includes, without limitation, any number of compute units
1550 and an [.2 cache 1542. In at least one embodiment,
compute units 1550 share L2 cache 1542. In at least one
embodiment, L2 cache 1542 is partitioned. In at least one
embodiment, graphics complex 1540 includes, without limi-
tation, any number of compute units 1550 and any number
(including zero) and type of caches. In at least one embodi-
ment, graphics complex 1540 includes, without limitation,
any amount of dedicated graphics hardware.

In at least one embodiment, each compute unit 1550
includes, without limitation, any number of SIMD units
1552 and a shared memory 1554. In at least one embodi-
ment, each SIMD umt 1552 implements a SIMD architec-
ture and 1s configured to perform operations 1n parallel. In at
least one embodiment, each compute unit 1550 may execute
any number of thread blocks, but each thread block executes
on a single compute unit 1550. In at least one embodiment,
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a thread block includes, without limitation, any number of
threads of execution. In at least one embodiment, a work-
group 1s a thread block. In at least one embodiment, each
SIMD unit 1552 executes a different warp. In at least one
embodiment, a warp 1s a group of threads (e.g., 16 threads),
where each thread in the warp belongs to a single thread
block and 1s configured to process a diflerent set of data
based on a single set of mstructions. In at least one embodi-
ment, predication can be used to disable one or more threads
in a warp. In at least one embodiment, a lane 1s a thread. In
at least one embodiment, a work 1tem 1s a thread. In at least
one embodiment, a wavelront 1s a warp. In at least one
embodiment, different wavelronts 1n a thread block may
synchronize together and communicate via shared memory
1554.

In at least one embodiment, fabric 1560 1s a system
interconnect that facilitates data and control transmissions
across core complex 1510, graphics complex 1540, 1/O
interfaces 1570, memory controllers 1580, display controller
1592, and multimedia engine 1594. In at least one embodi-
ment, APU 1500 may include, without limitation, any
amount and type of system interconnect in addition to or
instead of fabric 1560 that facilitates data and control
transmissions across any number and type of directly or
indirectly linked components that may be internal or exter-
nal to APU 1500. In at least one embodiment, I/O interfaces
1570 are representative of any number and type of I/O
interfaces (e.g., PCI, PCI-Extended (“PCI-X"), PCle, giga-
bit Ethernet (“GBE”), USB, etc.). In at least one embodi-
ment, various types of peripheral devices are coupled to I/O
interfaces 1570 In at least one embodiment, peripheral
devices that are coupled to 1/0 interfaces 1570 may include,
without limitation, keyboards, mice, printers, scanners, 10y-
sticks or other types of game controllers, media recording
devices, external storage devices, network interface cards,
and so forth.

In at least one embodiment, display controller AMD92
displays 1images on one or more display device(s), such as a
liguad crystal display (“LCD”) device. In at least one
embodiment, multimedia engine 240 includes, without limi-
tation, any amount and type of circuitry that 1s related to
multimedia, such as a video decoder, a video encoder, an
image signal processor, etc. In at least one embodiment,
memory controllers 1580 facilitate data transiers between
APU 1500 and a unified system memory 1590. In at least
one embodiment, core complex 1510 and graphics complex
1540 share unified system memory 1590.

In at least one embodiment, APU 1500 implements a
memory subsystem that includes, without limitation, any
amount and type of memory controllers 1580 and memory
devices (e.g., shared memory 1554) that may be dedicated to
one component or shared among multiple components. In at
least one embodiment, APU 1500 implements a cache
subsystem that includes, without limitation, one or more
cache memories (e.g., L2 caches 1628, .3 cache 1530, and
.2 cache 1542) that may each be private to or shared
between any number of components (e.g., cores 1520, core
complex 1510, SIMD units 1552, compute units 1550, and
graphics complex 1540).

FIG. 16 1llustrates a CPU 1600, in accordance with at least
one embodiment. In at least one embodiment, CPU 1600 1s
developed by AMD Corporation of Santa Clara, CA In at
least one embodiment, CPU 1600 can be configured to
execute an application program. In at least one embodiment,
CPU 1600 1s configured to execute main control software,
such as an operating system. In at least one embodiment,
CPU 1600 1ssues commands that control the operation of an
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external GPU (not shown). In at least one embodiment, CPU
1600 can be configured to execute host executable code
derived from CUDA source code, and an external GPU can
be configured to execute device executable code derived
from such CUDA source code. In at least one embodiment,
CPU 1600 includes, without limitation, any number of core

complexes 1610, fabric 1660, I/O interfaces 1670, and
memory controllers 1680.

In at least one embodiment, core complex 1610 includes,
without limitation, cores 1620(1)-1620(4) and an L3 cache
1630. In at least one embodiment, core complex 1610 may
include, without limitation, any number of cores 1620 and
any number and type of caches 1n any combination. In at
least one embodiment, cores 1620 are configured to execute
instructions of a particular ISA. In at least one embodiment,
cach core 1620 1s a CPU core.

In at least one embodiment, each core 1620 includes,
without limitation, a fetch/decode umit 1622, an integer

execution engine 1624, a tloating point execution engine
1626, and an .2 cache 1628. In at least one embodiment,
fetch/decode unit 1622 fetches instructions, decodes such
instructions, generates micro-operations, and dispatches
separate micro-instructions to mteger execution engine 1624
and floating point execution engine 1626. In at least one
embodiment, fetch/decode unit 1622 can concurrently dis-
patch one micro-mstruction to integer execution engine
1624 and another micro-instruction to floating point execu-
tion engine 1626. In at least one embodiment, integer
execution engine 1624 executes, without limitation, integer
and memory operations. In at least one embodiment, floating
point engine 1626 executes, without limitation, floating
point and vector operations. In at least one embodiment,
tetch-decode unit 1622 dispatches micro-instructions to a
single execution engine that replaces both integer execution
engine 1624 and floating point execution engine 1626.

In at least one embodiment, each core 1620(i), where 1 1s
an integer representing a particular mstance of core 1620,
may access L2 cache 1628(i) included in core 1620(i). In at
least one embodiment, each core 1620 included 1n core
complex 1610(;), where j 1s an integer representing a par-
ticular istance of core complex 1610, 1s connected to other
cores 1620 1n core complex 1610(;) via L3 cache 1630(;)
included 1n core complex 1610(;). In at least one embodi-
ment, cores 1620 included in core complex 1610(;), where
1 1s an 1nteger representing a particular instance of core
complex 1610, can access all of L3 cache 1630(;) included
in core complex 1610(7). In at least one embodiment, 1.3
cache 1630 may include, without limitation, any number of
slices.

In at least one embodiment, fabric 1660 1s a system
interconnect that facilitates data and control transmissions
across core complexes 1610(1)-1610(N) (where N 1s an
integer greater than zero), I/O interfaces 1670, and memory
controllers 1680. In at least one embodiment, CPU 1600
may include, without limitation, any amount and type of
system interconnect in addition to or instead of fabric 1660
that facilitates data and control transmissions across any
number and type of directly or indirectly linked components
that may be internal or external to CPU 1600. In at least one
embodiment, I/O nterfaces 1670 are representative of any
number and type of I/O mterfaces (e.g., PCI, PCI-X, PCle,
GBE, USB, etc.). In at least one embodiment, various types
of peripheral devices are coupled to I/O interfaces 1670 In
at least one embodiment, peripheral devices that are coupled
to I/O interfaces 1670 may include, without limitation,
displays, keyboards, mice, printers, scanners, joysticks or
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other types of game controllers, media recording devices,
external storage devices, network interface cards, and so
forth.

In at least one embodiment, memory controllers 1680
facilitate data transfers between CPU 1600 and a system
memory 1690. In at least one embodiment, core complex
1610 and graphics complex 1640 share system memory
1690. In at least one embodiment, CPU 1600 implements a
memory subsystem that includes, without limitation, any
amount and type of memory controllers 1680 and memory
devices that may be dedicated to one component or shared
among multiple components. In at least one embodiment,
CPU 1600 implements a cache subsystem that includes,
without limitation, one or more cache memories (e.g., L2
caches 1628 and L3 caches 1630) that may each be private
to or shared between any number of components (e.g., cores
1620 and core complexes 1610).

FIG. 17 illustrates an exemplary accelerator integration
slice 1790, in accordance with at least one embodiment. As
used herein, a “slice” comprises a specified portion of
processing resources of an accelerator itegration circuit. In
at least one embodiment, the accelerator integration circuit
provides cache management, memory access, context man-
agement, and interrupt management services on behalf of
multiple graphics processing engines included 1n a graphics
acceleration module. The graphics processing engines may
cach comprise a separate GPU. Alternatively, the graphics
processing engines may comprise different types of graphics
processing engines within a GPU such as graphics execution
units, media processing engines (e.g., video encoders/de-
coders), samplers, and blit engines. In at least one embodi-
ment, the graphics acceleration module may be a GPU with
multiple graphics processing engines. In at least one
embodiment, the graphics processing engines may be 1ndi-
vidual GPUs integrated on a common package, line card, or
chip.

An application eflective address space 1782 within sys-
tem memory 1714 stores process elements 1783. In one
embodiment, process elements 1783 are stored in response
to GPU 1nvocations 1781 from applications 1780 executed
on processor 1707. A process element 1783 contains process
state for corresponding application 1780. A work descriptor
(“WD”) 1784 contained in process element 1783 can be a
single job requested by an application or may contain a
pointer to a queue of jobs. In at least one embodiment, WD
1784 1s a pointer to a job request queue 1n application
cllective address space 1782.

Graphics acceleration module 1746 and/or individual
graphics processing engines can be shared by all or a subset
of processes 1 a system. In at least one embodiment, an
inirastructure for setting up process state and sending WD
1784 to graphics acceleration module 1746 to start a job 1n
a virtualized environment may be included.

In at least one embodiment, a dedicated-process program-
ming model 1s 1mplementation-specific. In this model, a
single process owns graphics acceleration module 1746 or
an 1ndividual graphics processing engine. Because graphics
acceleration module 1746 1s owned by a single process, a
hypervisor mitializes an accelerator integration circuit for an
owning partition and an operating system initializes accel-
erator integration circuit for an owning process when graph-
ics acceleration module 1746 1s assigned.

In operation, a WD fetch unit 1791 in accelerator inte-
gration slice 1790 fetches next WD 1784 which includes an
indication of work to be done by one or more graphics
processing engines of graphics acceleration module 1746.
Data from WD 1784 may be stored 1n registers 1745 and
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used by a memory management umit (“MMU”) 1739, inter-
rupt management circuit 1747 and/or context management
circuit 1748 as illustrated. For example, one embodiment of
MMU 1739 includes segment/page walk circuitry {for
accessing segment/page tables 1786 within OS virtual
address space 1785. Interrupt management circuit 1747 may
process interrupt events (“IN17") 1792 received from graph-
ics acceleration module 1746. When performing graphics

operations, an eflective address 1793 generated by a graph-
1Cs processing engine 1s translated to a real address by MMU
1739.

In one embodiment, a same set of registers 1745 are
duplicated for each graphics processing engine and/or
graphics acceleration module 1746 and may be initialized by
a hypervisor or operating system. Each of these duplicated
registers may be included in accelerator integration slice
1790. Exemplary registers that may be mitialized by a
hypervisor are shown in Table 1.

TABLE 1

Hypervisor Initialized Registers

Slice Control Register

Real Address (RA) Scheduled Processes Area Pointer

Authority Mask Override Register

Interrupt Vector Table Entry Offset

Interrupt Vector Table Entry Limuit

State Register

Logical Partition ID

Real address (RA) Hypervisor Accelerator Utilization Record Pointer
Storage Description Register

O o0 0 Oy o I o b

Exemplary registers that may be inmitialized by an oper-
ating system are shown in Table 2.

TABLE 2

Operating System Initialized Registers

Process and Thread Identification

Effective Address (EA) Context Save/Restore Pointer
Virtual Address (VA) Accelerator Utilization Record Pointer
Virtual Address (VA) Storage Segment Table Pointer

Authority Mask
Work descriptor

Sy L s D R

In one embodiment, each WD 1784 1s specilic to a
particular graphics acceleration module 1746 and/or a par-
ticular graphics processing engine. It contains all informa-

tion required by a graphics processing engine to do work or
it can be a pointer to a memory location where an application
has set up a command queue of work to be completed.

FIGS. 18 A and 18B illustrate exemplary graphics proces-
sors, 1n accordance with at least one embodiment. In at least
one embodiment, any of the exemplary graphics processors
may be fabricated using one or more IP cores. In addition to
what 1s 1llustrated, other logic and circuits may be included
in at least one embodiment, including additional graphics
processors/cores, peripheral interface controllers, or gen-
eral-purpose processor cores. In at least one embodiment,
the exemplary graphics processors are for use within an
SoC.

FIG. 18A illustrates an exemplary graphics processor
1810 of an SoC tegrated circuit that may be fabricated
using one or more IP cores, 1n accordance with at least one
embodiment. FIG. 18B illustrates an additional exemplary
graphics processor 1840 of an SoC integrated circuit that
may be fabricated using one or more IP cores, in accordance
with at least one embodiment. In at least one embodiment,
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graphics processor 1810 of FIG. 18A 1s a low power
graphics processor core. In at least one embodiment, graph-
ics processor 1840 of FIG. 18B 1s a higher performance
graphics processor core. In at least one embodiment, each of
graphics processors 1810, 1840 can be variants of graphics
processor 1310 of FIG. 13.

In at least one embodiment, graphics processor 1810

includes a vertex processor 1805 and one or more fragment
processor(s) 1815A-1815N (e.g., 1815A, 181358, 1815C,

1815D, through 1815N-1, and 1813N). In at least one
embodiment, graphics processor 1810 can execute different
shader programs via separate logic, such that vertex proces-
sor 1805 1s optimized to execute operations for vertex shader
programs, while one or more fragment processor(s) 1815A-
1815N execute fragment (e.g., pixel) shading operations for
fragment or pixel shader programs. In at least one embodi-
ment, vertex processor 1805 performs a vertex processing
stage of a 3D graphics pipeline and generates primitives and
vertex data. In at least one embodiment, Ifragment
processor(s) 1815A-1815N use primitive and vertex data
generated by vertex processor 1805 to produce a framebuller
that 1s displayed on a display device. In at least one
embodiment, fragment processor(s) 1815A-1815N are opti-
mized to execute fragment shader programs as provided for
in an OpenGL API, which may be used to perform similar
operations as a pixel shader program as provided for in a
Direct 3D APL.

In at least one embodiment, graphics processor 1810
additionally includes one or more MMU(s) 1820A-1820B,
cache(s) 1825A-1825B, and circuit interconnect(s) 1830A--
1830B. In at least one embodiment, one or more MMU(s)
1820A-1820B provide for virtual to physical address map-
ping for graphics processor 1810, including for vertex
processor 1805 and/or fragment processor(s) 1815A-18135N,
which may reference vertex or image/texture data stored in
memory, in addition to vertex or image/texture data stored in
one or more cache(s) 1825A-1825B. In at least one embodi-
ment, one or more MMU(s) 1820A-1820B may be synchro-
nized with other MMUs within a system, including one or
more MMUSs associated with one or more application pro-
cessor(s) 13035, image processors 1315, and/or video pro-
cessors 1320 of FI1G. 13, such that each processor 1305-1320
can participate 1n a shared or unified virtual memory system.
In at least one embodiment, one or more circuit
interconnect(s) 1830A-1830B enable graphics processor
1810 to intertace with other IP cores within an SoC, either
via an iternal bus of the SoC or via a direct connection.

In at least one embodiment, graphics processor 1840
includes one or more MMU(s) 1820A-1820B, caches

1825A-1825B, and circuit interconnects 1830A-1830B of
graphics processor 1810 of FIG. 18A. In at least one
embodiment, graphics processor 1840 1includes one or more
shader core(s) 1855A-1855N (e.g., 1855A, 18558, 1855C,
1855D, 1855E, 1855F, through 1855N-1, and 1855N),
which provides for a unified shader core architecture in
which a single core or type or core can execute all types of
programmable shader code, including shader program code
to implement vertex shaders, fragment shaders, and/or com-
pute shaders. In at least one embodiment, a number of shader
cores can vary. In at least one embodiment, graphics pro-
cessor 1840 includes an inter-core task manager 1845, which
acts as a thread dispatcher to dispatch execution threads to
one or more shader cores 1855A-1855N and a tiling unit
1858 to accelerate tiling operations for tile-based rendering,
in which rendering operations for a scene are subdivided 1n
image space, for example to exploit local spatial coherence
within a scene or to optimize use of internal caches.
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FIG. 19A illustrates a graphics core 1900, 1n accordance
with at least one embodiment. In at least one embodiment,
graphics core 1900 may be included within graphics pro-
cessor 1310 of FIG. 13. In at least one embodiment, graphics
core 1900 may be a unified shader core 1855A-1855N as 1n

FIG. 18B. In at least one embodiment, graphics core 1900
includes a shared instruction cache 1902, a texture unit
1918, and a cache/shared memory 1920 that are common to
execution resources within graphics core 1900. In at least
one embodiment, graphics core 1900 can include multiple
slices 1901 A-1901N or partition for each core, and a graph-
ics processor can include multiple imnstances of graphics core
1900. Slices 1901 A-1901N can include support logic includ-
ing a local instruction cache 1904 A-1904N, a thread sched-
uler 1906A-1906N, a thread dispatcher 1908 A-1908N, and
a set of registers 1910A-1910N. In at least one embodiment,
slices 1901 A-1901N can mclude a set of additional function
units  (“AFUs”) 1912A-1912N, {floating-point units
(“FPUs”) 1914A-1914N, integer arithmetic logic units
(“ALUs”) 1916-1916N, address computational units
(“ACUs”) 1913A-1913N, double-precision tloating-point
units (“DPFPUs”) 1915A-1915N, and matrix processing,
units (“MPUs”) 1917A-1917N.

In at least one embodiment, FPUs 1914A-1914N can
perform single-precision (32-bit) and half-precision (16-bit)
floating point operations, while DPFPUs 1915A-1915N
perform double precision (64-bit) floating point operations.
In at least one embodiment, ALUs 1916A-1916N can per-
form variable precision integer operations at 8-bit, 16-bat,
and 32-bit precision, and can be configured for mixed
precision operations. In at least one embodiment, MPUs
1917A-1917N can also be configured for mixed precision
matrix operations, including half-precision floating point
and 8-bit mteger operations. In at least one embodiment,
MPUs 1917-1917N can perform a variety of matrix opera-
tions to accelerate CUDA programs, including enabling
support for accelerated general matrix to matrix multiplica-
tion (“GEMM”). In at least one embodiment, AFUs 1912A-
1912N can perform additional logic operations not sup-
ported by floating-point or integer units, 1ncluding
trigonometric operations (e.g., Sine, Cosine, etc.).

FIG. 19B illustrates a general-purpose graphics process-
ing unit (“GPGPU”) 1930, 1n accordance with at least one
embodiment. In at least one embodiment, GPGPU 1930 1s
highly-parallel and suitable for deployment on a multi-chip
module. In at least one embodiment, GPGPU 1930 can be
configured to enable highly-parallel compute operations to
be performed by an array of GPUs. In at least one embodi-
ment, GPGPU 1930 can be linked directly to other instances
of GPGPU 1930 to create a multi-GPU cluster to improve
execution time for CUDA programs. In at least one embodi-
ment, GPGPU 1930 includes a host interface 1932 to enable
a connection with a host processor. In at least one embodi-
ment, host interface 1932 1s a PCle interface. In at least one
embodiment, host interface 1932 can be a vendor specific
communications interface or communications fabric. In at
least one embodiment, GPGPU 1930 receives commands
from a host processor and uses a global scheduler 1934 to
distribute execution threads associated with those com-
mands to a set of compute clusters 1936 A-1936H. In at least
one embodiment, compute clusters 1936A-1936H share a
cache memory 1938. In at least one embodiment, cache
memory 1938 can serve as a higher-level cache for cache
memories within compute clusters 1936 A-1936H.

In at least one embodiment, GPGPU 1930 includes
memory 1944A-1944B coupled with compute clusters
1936 A-1936H via a set of memory controllers 1942A-
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1942B. In at least one embodiment, memory 1944 A-19448
can include various types of memory devices including
DRAM or graphics random access memory, such as syn-
chronous graphics random access memory (“SGRAM”),
including graphics double data rate (“GDDR”) memory.

In at least one embodiment, compute clusters 1936A-
1936H each include a set of graphics cores, such as graphics
core 1900 of FIG. 19A, which can include multiple types of
integer and floating point logic umts that can perform
computational operations at a range of precisions including
suited for computations associated with CUDA programs.
For example, 1n at least one embodiment, at least a subset of
floating point units in each of compute clusters 1936 A-
1936H can be configured to perform 16-bit or 32-bit floating,
point operations, while a different subset of floating point
units can be configured to perform 64-bit tloating point
operations.

In at least one embodiment, multiple instances of GPGPU
1930 can be configured to operate as a compute cluster.
Compute clusters 1936 A-1936H may implement any tech-
nically feasible communication techniques for synchroniza-
tion and data exchange. In at least one embodiment, multiple
instances of GPGPU 1930 communicate over host interface

1932. In at least one embodiment, GPGPU 1930 includes an
I/O hub 1939 that couples GPGPU 1930 with a GPU link
1940 that enables a direct connection to other instances of
GPGPU 1930. In at least one embodiment, GPU link 1940
1s coupled to a dedicated GPU-to-GPU bridge that enables
communication and synchromization between multiple
instances of GPGPU 1930. In at least one embodiment GPU
link 1940 couples with a high speed interconnect to transmit
and receive data to other GPGPUs 1930 or parallel proces-
sors. In at least one embodiment, multiple instances of

GPGPU 1930 are located 1n separate data processing sys-
tems and communicate via a network device that 1s acces-
sible via host interface 1932. In at least one embodiment
GPU link 1940 can be configured to enable a connection to
a host processor 1n addition to or as an alternative to host
interface 1932. In at least one embodiment, GPGPU 1930
can be configured to execute a CUDA program.

FIG. 20A 1illustrates a parallel processor 2000, 1n accor-
dance with at least one embodiment. In at least one embodi-
ment, various components of parallel processor 2000 may be
implemented using one or more integrated circuit devices,
such as programmable processors, application specific inte-
grated circuits (“ASICs™), or FPGAs.

In at least one embodiment, parallel processor 2000
includes a parallel processing unit 2002. In at least one
embodiment, parallel processing unit 2002 includes an 1/0
unit 2004 that enables communication with other devices,
including other mstances of parallel processing unit 2002. In
at least one embodiment, I/O unit 2004 may be directly
connected to other devices. In at least one embodiment, [/O
unit 2004 connects with other devices via use of a hub or
switch interface, such as memory hub 2005. In at least one
embodiment, connections between memory hub 2005 and
I/O unit 2004 form a communication link. In at least one
embodiment, 1/O unit 2004 connects with a host interface
2006 and a memory crossbar 2016, where host interface
2006 receives commands directed to performing processing
operations and memory crossbar 2016 receives commands
directed to performing memory operations.

In at least one embodiment, when host intertace 2006
recerves a command bufller via I/O unit 2004, host interface
2006 can direct work operations to perform those commands
to a front end 2008. In at least one embodiment, front end
2008 couples with a scheduler 2010, which 1s configured to
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distribute commands or other work 1tems to a processing
array 2012. In at least one embodiment, scheduler 2010
ensures that processing array 2012 1s properly configured
and 1n a valid state before tasks are distributed to processing
array 2012. In at least one embodiment, scheduler 2010 1s
implemented via firmware logic executing on a microcon-
troller. In at least one embodiment, microcontroller 1imple-
mented scheduler 2010 1s configurable to perform complex
scheduling and work distribution operations at coarse and
fine granularity, enabling rapid preemption and context
switching of threads executing on processing array 2012. In
at least one embodiment, host software can prove workloads
for scheduling on processing array 2012 via one of multiple
graphics processing doorbells. In at least one embodiment,
workloads can then be automatically distributed across
processing array 2012 by scheduler 2010 logic within a
microcontroller including scheduler 2010.

In at least one embodiment, processing array 2012 can
include up to “N” clusters (e.g., cluster 2014 A, cluster
2014B, through cluster 2014N). In at least one embodiment,
cach cluster 2014A-2014N of processing array 2012 can
execute a large number of concurrent threads. In at least one
embodiment, scheduler 2010 can allocate work to clusters
2014A-2014N of processing array 2012 using various
scheduling and/or work distribution algorithms, which may
vary depending on the workload arising for each type of
program or computation. In at least one embodiment, sched-
uling can be handled dynamically by scheduler 2010, or can
be assisted 1n part by compiler logic during compilation of
program logic configured for execution by processing array
2012. In at least one embodiment, diflerent clusters 2014 A -
2014N of processing array 2012 can be allocated for pro-
cessing different types ol programs or for performing dif-
ferent types of computations.

In at least one embodiment, processing array 2012 can be
configured to perform various types of parallel processing
operations. In at least one embodiment, processing array
2012 1s configured to perform general-purpose parallel com-
pute operations. For example, in at least one embodiment,
processing array 2012 can include logic to execute process-
ing tasks including filtering of video and/or audio data,
performing modeling operations, including physics opera-
tions, and performing data transformations.

In at least one embodiment, processing array 2012 1s
configured to perform parallel graphics processing opera-
tions. In at least one embodiment, processing array 2012 can
include additional logic to support execution of such graph-
ics processing operations, including, but not limited to
texture sampling logic to perform texture operations, as well
as tessellation logic and other vertex processing logic. In at
least one embodiment, processing array 2012 can be con-
figured to execute graphics processing related shader pro-
grams such as, but not limited to vertex shaders, tessellation
shaders, geometry shaders, and pixel shaders. In at least one
embodiment, parallel processing unit 2002 can transfer data
from system memory via I/O unit 2004 for processing. In at
least one embodiment, during processing, transierred data
can be stored to on-chip memory (e.g., a parallel processor
memory 2022) during processing, then written back to
system memory.

In at least one embodiment, when parallel processing unit
2002 1s used to perform graphics processing, scheduler 2010
can be configured to divide a processing workload into
approximately equal sized tasks, to better enable distribution
of graphics processing operations to multiple clusters
2014A-2014N of processing array 2012. In at least one
embodiment, portions of processing array 2012 can be
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configured to perform different types of processing. For
example, 1n at least one embodiment, a first portion may be
configured to perform vertex shading and topology genera-
tion, a second portion may be configured to perform tessel-
lation and geometry shading, and a third portion may be
configured to perform pixel shading or other screen space
operations, to produce a rendered 1mage for display. In at
least one embodiment, intermediate data produced by one or
more of clusters 2014A-2014N may be stored in buflers to
allow intermediate data to be transmitted between clusters
2014A-2014N for further processing.

In at least one embodiment, processing array 2012 can
receive processing tasks to be executed via scheduler 2010,
which receives commands defining processing tasks from
front end 2008. In at least one embodiment, processing tasks
can include indices of data to be processed, e.g., surface
(patch) data, primitive data, vertex data, and/or pixel data, as
well as state parameters and commands defining how data 1s
to be processed (e.g., what program 1s to be executed). In at
least one embodiment, scheduler 2010 may be configured to
tetch 1indices corresponding to tasks or may receive indices
from front end 2008. In at least one embodiment, front end
2008 can be configured to ensure processing array 2012 1s
configured to a valid state before a workload specified by
incoming command buflers (e.g., batch-butflers, push bui-
fers, etc.) 1s mitiated.

In at least one embodiment, each of one or more instances
of parallel processing unit 2002 can couple with parallel
processor memory 2022. In at least one embodiment, par-
allel processor memory 2022 can be accessed via memory
crossbar 2016, which can receive memory requests from
processing array 2012 as well as I/O unit 2004. In at least
one embodiment, memory crossbar 2016 can access parallel
processor memory 2022 via a memory interface 2018. In at
least one embodiment, memory interface 2018 can include
multiple partition units (e.g., a partition unit 2020A, parti-
tion unit 20208, through partition unit 2020N) that can each
couple to a portion (e.g., memory unit) of parallel processor
memory 2022. In at least one embodiment, a number of
partition units 2020A-2020N 1s configured to be equal to a
number of memory units, such that a first partition unit
2020A has a corresponding first memory unit 2024A, a
second partition unit 2020B has a corresponding memory
umt 20248, and an Nth partition unit 2020N has a corre-
sponding Nth memory umt 2024N. In at least one embodi-
ment, a number of partition units 2020A-2020N may not be
equal to a number of memory devices.

In at least one embodiment, memory units 2024 A-2024N
can include various types of memory devices, including
DRAM or graphics random access memory, such as
SGRAM, including GDDR memory. In at least one embodi-
ment, memory umts 2024A-2024N may also include 3D
stacked memory, including but not limited to high band-
width memory (“HBM?”). In at least one embodiment, render
targets, such as frame buflers or texture maps may be stored
across memory units 2024A-2024N, allowing partition units
2020A-2020N to write portions of each render target in
parallel to efliciently use available bandwidth of parallel
processor memory 2022. In at least one embodiment, a local
instance of parallel processor memory 2022 may be
excluded 1n favor of a unified memory design that utilizes
system memory in conjunction with local cache memory.

In at least one embodiment, any one of clusters 2014 A-
2014N of processing array 2012 can process data that will be
written to any of memory units 2024A-2024N within par-
allel processor memory 2022. In at least one embodiment,
memory crossbar 2016 can be configured to transfer an
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output of each cluster 2014A-2014N to any partition unit
2020A-2020N or to another cluster 2014A-2014N, which
can perform additional processing operations on an output.
In at least one embodiment, each cluster 2014A-2014N can
communicate with memory interface 2018 through memory
crossbar 2016 to read from or wrte to various external
memory devices. In at least one embodiment, memory
crossbar 2016 has a connection to memory interface 2018 to
communicate with I/O unit 2004, as well as a connection to
a local instance of parallel processor memory 2022, enabling
processing units within different clusters 2014A-2014N to
communicate with system memory or other memory that 1s
not local to parallel processing unit 2002. In at least one
embodiment, memory crossbar 2016 can use virtual chan-
nels to separate traflic streams between clusters 2014 A-
2014N and partition units 2020A-2020N.

In at least one embodiment, multiple instances of parallel
processing unit 2002 can be provided on a single add-in
card, or multiple add-in cards can be interconnected. In at
least one embodiment, different instances of parallel pro-
cessing unit 2002 can be configured to interoperate even 1f
different instances have different numbers of processing
cores, diflerent amounts of local parallel processor memory,
and/or other configuration differences. For example, 1n at
least one embodiment, some instances of parallel processing
unit 2002 can include higher precision tloating point units
relative to other instances. In at least one embodiment,
systems 1ncorporating one or more instances ol parallel
processing unit 2002 or parallel processor 2000 can be
implemented in a variety of configurations and form factors,
including but not limited to desktop, laptop, or handheld
personal computers, servers, workstations, game consoles,
and/or embedded systems.

FIG. 20B 1illustrates a processing cluster 2094, in accor-
dance with at least one embodiment. In at least one embodi-
ment, processing cluster 2094 1s included within a parallel
processing unit. In at least one embodiment, processing
cluster 2094 1s one of processing clusters 2014A-2014N of
FIG. 20. In at least one embodiment, processing cluster 2094
can be configured to execute many threads 1n parallel, where
the term “thread” refers to an instance of a particular
program executing on a particular set of mput data. In at
least one embodiment, single instruction, multiple data
(“SIMD”) instruction 1ssue techniques are used to support
parallel execution of a large number of threads without
providing multiple independent mstruction units. In at least
one embodiment, single instruction, multiple thread
(“SIMT”) techniques are used to support parallel execution
of a large number of generally synchronized threads, using
a common 1nstruction unit configured to 1ssue 1nstructions to
a set of processing engines within each processing cluster
2094,

In at least one embodiment, operation of processing
cluster 2094 can be controlled via a pipeline manager 2032
that distributes processing tasks to SIMT parallel processors.
In at least one embodiment, pipeline manager 2032 receives
instructions from scheduler 2010 of FIG. 20 and manages
execution of those instructions via a graphics multiprocessor
2034 and/or a texture unit 2036. In at least one embodiment,
graphics multiprocessor 2034 1s an exemplary nstance of a
SIMT parallel processor. However, 1n at least one embodi-
ment, various types of SIMT parallel processors of differing,
architectures may be included within processing cluster
2094. In at least one embodiment, one or more instances of
graphics multiprocessor 2034 can be included within pro-
cessing cluster 2094. In at least one embodiment, graphics
multiprocessor 2034 can process data and a data crossbar
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2040 can be used to distribute processed data to one of
multiple possible destinations, including other shader units.
In at least one embodiment, pipeline manager 2032 can
facilitate distribution of processed data by specitying desti-
nations for processed data to be distributed via data crossbar
2040.

In at least one embodiment, each graphics multiprocessor
2034 within processing cluster 2094 can include an 1dentical
set of functional execution logic (e.g., arithmetic logic unaits,
load/store units (“LLSUs”), etc.). In at least one embodiment,
functional execution logic can be configured in a pipelined
manner in which new instructions can be 1ssued before
previous instructions are complete. In at least one embodi-
ment, functional execution logic supports a variety of opera-
tions including integer and floating point arithmetic, com-
parison operations, Boolean operations, bit-shifting, and
computation of various algebraic functions. In at least one
embodiment, same functional-unit hardware can be lever-
aged to perform different operations and any combination of
functional units may be present.

In at least one embodiment, instructions transmitted to
processing cluster 2094 constitute a thread. In at least one
embodiment, a set of threads executing across a set of
parallel processing engines 1s a thread group. In at least one
embodiment, a thread group executes a program on different
input data. In at least one embodiment, each thread within a
thread group can be assigned to a diflerent processing engine
within graphics multiprocessor 2034. In at least one embodi-
ment, a thread group may include fewer threads than a
number of processing engines within graphics multiproces-
sor 2034. In at least one embodiment, when a thread group
includes fewer threads than a number of processing engines,
one or more of the processing engines may be 1dle during
cycles 1n which that thread group 1s being processed. In at
least one embodiment, a thread group may also include more
threads than a number of processing engines within graphics
multiprocessor 2034. In at least one embodiment, when a
thread group includes more threads than the number of
processing engines within graphics multiprocessor 2034,
processing can be performed over consecutive clock cycles.
In at least one embodiment, multiple thread groups can be
executed concurrently on graphics multiprocessor 2034.

In at least one embodiment, graphics multiprocessor 2034
includes an internal cache memory to perform load and store
operations. In at least one embodiment, graphics multipro-
cessor 2034 can forego an internal cache and use a cache
memory (e.g., L1 cache 2048) within processing cluster
2094. In at least one embodiment, each graphics multipro-
cessor 2034 also has access to Level 2 (*LL2) caches within
partition units (e.g., partition units 2020A-2020N of FIG.
20A) that are shared among all processing clusters 2094 and
may be used to transfer data between threads. In at least one
embodiment, graphics multiprocessor 2034 may also access
ofl-chip global memory, which can include one or more of
local parallel processor memory and/or system memory. In
at least one embodiment, any memory external to parallel
processing unit 2002 may be used as global memory. In at
least one embodiment, processing cluster 2094 includes
multiple 1nstances of graphics multiprocessor 2034 that can
share common structions and data, which may be stored 1n
L1 cache 2048.

In at least one embodiment, each processing cluster 2094
may 1mclude an MMU 2045 that 1s configured to map virtual
addresses 1nto physical addresses. In at least one embodi-
ment, one or more istances of MMU 2045 may reside
within memory interface 2018 of FIG. 20. In at least one
embodiment, MMU 2045 includes a set of page table entries
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(“PTEs”) used to map a virtual address to a physical address
of a tile and optionally a cache line imndex. In at least one
embodiment, MMU 2045 may include address translation
lookaside buflers (“TLBs”) or caches that may reside within
graphics multiprocessor 2034 or .1 cache 2048 or process-
ing cluster 2094. In at least one embodiment, a physical
address 1s processed to distribute surface data access locality
to allow eflicient request 1interleaving among partition units.
In at least one embodiment, a cache line index may be used
to determine whether a request for a cache line 1s a hit or
miss.

In at least one embodiment, processing cluster 2094 may
be configured such that each graphics multiprocessor 2034
1s coupled to a texture unit 2036 for performing texture
mapping operations, €.g., determining texture sample posi-
tions, reading texture data, and filtering texture data. In at
least one embodiment, texture data 1s read from an internal
texture L1 cache (not shown) or from an L1 cache within
graphics multiprocessor 2034 and i1s fetched from an L2
cache, local parallel processor memory, or system memory,
as needed. In at least one embodiment, each graphics
multiprocessor 2034 outputs a processed task to data cross-
bar 2040 to provide the processed task to another processing,
cluster 2094 for further processing or to store the processed
task 1 an L2 cache, a local parallel processor memory, or a
system memory via memory crossbar 2016. In at least one
embodiment, a pre-raster operations unit (“preROP”) 2042
1s configured to receive data from graphics multiprocessor
2034, direct data to ROP units, which may be located with
partition units as described herein (e.g., partition units
2020A-2020N of FIG. 20). In at least one embodiment,
PreROP 2042 can perform optimizations for color blending,
organize pixel color data, and perform address translations.

FIG. 20C 1llustrates a graphics multiprocessor 2096, in
accordance with at least one embodiment. In at least one
embodiment, graphics multiprocessor 2096 1s graphics mul-
tiprocessor 2034 of FIG. 20B. In at least one embodiment,
graphics multiprocessor 2096 couples with pipeline man-
ager 2032 of processing cluster 2094. In at least one embodi-
ment, graphics multiprocessor 2096 has an execution pipe-
line including but not limited to an instruction cache 2052,
an instruction unit 2054, an address mapping unit 2056, a
register file 2058, one or more GPGPU cores 2062, and one
or more LSUs 2066. GPGPU cores 2062 and LSUs 2066 arc
coupled with cache memory 2072 and shared memory 2070
via a memory and cache interconnect 2068.

In at least one embodiment, instruction cache 2052
receives a stream of instructions to execute from pipeline
manager 2032. In at least one embodiment, instructions are
cached 1n 1nstruction cache 20352 and dispatched for execu-
tion by instruction unit 2054. In at least one embodiment,
instruction unit 2054 can dispatch instructions as thread
groups (e.g., warps), with each thread of a thread group
assigned to a different execution unit within GPGPU core
2062. In at least one embodiment, an instruction can access
any of a local, shared, or global address space by specitying
an address within a unified address space. In at least one
embodiment, address mapping unit 2056 can be used to
translate addresses 1n a unified address space into a distinct
memory address that can be accessed by LSUs 2066.

In at least one embodiment, register file 2058 provides a
set of registers for functional units of graphics multiproces-
sor 2096. In at least one embodiment, register file 2058
provides temporary storage for operands connected to data
paths of functional units (e.g., GPGPU cores 2062, LSUs
2066) of graphics multiprocessor 2096. In at least one
embodiment, register file 2058 1s divided between each of
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functional units such that each functional unit 1s allocated a
dedicated portion of register file 2058. In at least one
embodiment, register file 2058 1s divided between different
thread groups being executed by graphics multiprocessor
2096.

In at least one embodiment, GPGPU cores 2062 can each
include FPUs and/or integer AL Us that are used to execute
instructions of graphics multiprocessor 2096. GPGPU cores
2062 can be similar 1n architecture or can differ 1n archi-
tecture. In at least one embodiment, a first portion of
GPGPU cores 2062 include a single precision FPU and an
integer ALU while a second portion of GPGPU cores 2062
include a double precision FPU. In at least one embodiment,
FPUs can implement IEEE 754-2008 standard for floating
point arithmetic or enable variable precision tloating point
arithmetic. In at least one embodiment, graphics multipro-
cessor 2096 can additionally include one or more fixed
function or special function units to perform specific func-
tions such as copy rectangle or pixel blending operations. In
at least one embodiment one or more of GPGPU cores 2062
can also include fixed or special function logic.

In at least one embodiment, GPGPU cores 2062 include
SIMD logic capable of performing a single instruction on
multiple sets of data. In at least one embodiment GPGPU
cores 2062 can physically execute SIMD4, SIMDS, and
SIMD16 1nstructions and logically execute SIMD1, SIMD?2,
and SIMD32 instructions. In at least one embodiment,
SIMD 1nstructions for GPGPU cores 2062 can be generated
at compile time by a shader compiler or automatically
generated when executing programs written and compiled
for single program multiple data (*SPMD”") or SIMT archi-
tectures. In at least one embodiment, multiple threads of a
program configured for an SIMT execution model can
executed via a single SIMD 1nstruction. For example, 1n at
least one embodiment, eight SIMT threads that perform the
same or similar operations can be executed 1n parallel via a
single SIMDS8 logic unait.

In at least one embodiment, memory and cache intercon-
nect 2068 1s an interconnect network that connects each
functional unit of graphics multiprocessor 2096 to register
file 2058 and to shared memory 2070. In at least one
embodiment, memory and cache interconnect 2068 1s a
crossbar interconnect that allows LSU 2066 to implement
load and store operations between shared memory 2070 and
register {ile 2058. In at least one embodiment, register file
2058 can operate at a same frequency as GPGPU cores
2062, thus data transfer between GPGPU cores 2062 and
register file 2058 1s very low latency. In at least one
embodiment, shared memory 2070 can be used to enable
communication between threads that execute on functional
units within graphics multiprocessor 2096. In at least one
embodiment, cache memory 2072 can be used as a data
cache for example, to cache texture data communicated
between functional units and texture unit 2036. In at least
one embodiment, shared memory 2070 can also be used as
a program managed cached. In at least one embodiment,
threads executing on GPGPU cores 2062 can programmati-
cally store data within shared memory in addition to auto-
matically cached data that i1s stored within cache memory
2072,

In at least one embodiment, a parallel processor or
GPGPU as described herein 1s communicatively coupled to
host/processor cores to accelerate graphics operations,
machine-learning operations, pattern analysis operations,
and various general purpose GPU (GPGPU) functions. In at
least one embodiment, a GPU may be communicatively
coupled to host processor/cores over a bus or other inter-
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connect (e.g., a high speed interconnect such as PCle or
NVLink). In at least one embodiment, a GPU may be
integrated on the same package or chip as cores and com-
municatively coupled to cores over a processor bus/inter-
connect that 1s internal to a package or a chip. In at least one
embodiment, regardless of the manner in which a GPU 1s
connected, processor cores may allocate work to the GPU 1n
the form of sequences of commands/instructions contained
in a WD. In at least one embodiment, the GPU then uses

dedicated circuitry/logic for efliciently processing these
commands/instructions.

FIG. 21 1illustrates a graphics processor 2100, in accor-
dance with at least one embodiment. In at least one embodi-
ment, graphics processor 2100 includes a ring interconnect
2102, a pipeline front-end 2104, a media engine 2137, and
graphics cores 2180A-2180N. In at least one embodiment,
ring 1nterconnect 2102 couples graphics processor 2100 to
other processing units, including other graphics processors
or one or more general-purpose processor cores. In at least
one embodiment, graphics processor 2100 1s one of many
processors mtegrated within a multi-core processing system.

In at least one embodiment, graphics processor 2100
receives batches of commands via ring imnterconnect 2102. In
at least one embodiment, incoming commands are inter-
preted by a command streamer 2103 1n pipeline front-end
2104. In at least one embodiment, graphics processor 2100
includes scalable execution logic to perform 3D geometry
processing and media processing via graphics core(s)
2180A-2180N. In at least one embodiment, for 3D geometry
processing commands, command streamer 2103 supplies
commands to geometry pipeline 2136. In at least one
embodiment, for at least some media processing commands,
command streamer 2103 supplies commands to a video front
end 2134, which couples with a media engine 2137. In at
least one embodiment, media engine 2137 includes a Video
Quality Engine (“VQE”) 2130 for video and image post-
processing and a multi-format encode/decode (*MFX™)
engine 2133 to provide hardware-accelerated media data
encode and decode. In at least one embodiment, geometry
pipeline 2136 and media engine 2137 each generate execu-
tion threads for thread execution resources provided by at
least one graphics core 2180A.

In at least one embodiment, graphics processor 2100
includes scalable thread execution resources featuring
modular graphics cores 2180A-2180N (sometimes referred
to as core slices), each having multiple sub-cores 2150A-
550N, 2160A-2160N (sometimes referred to as core sub-
slices). In at least one embodiment, graphics processor 2100
can have any number of graphics cores 2180A through
2180N. In at least one embodiment, graphics processor 2100
includes a graphics core 2180A having at least a first
sub-core 2150A and a second sub-core 2160A. In at least
one embodiment, graphics processor 2100 1s a low power
processor with a single sub-core (e.g., sub-core 2150A). In
at least one embodiment, graphics processor 2100 includes
multiple graphics cores 2180A-2180N, each including a set
of first sub-cores 2150A-2150N and a set of second sub-
cores 2160A-2160N. In at least one embodiment, each
sub-core 1n {irst sub-cores 2150A-2150N includes at least a
first set of execution units (“EUs”) 2152A-2152N and

media/texture samplers 2154A-2154N. In at least one
embodiment, each sub-core in second sub-cores 2160A-

2160N 1ncludes at least a second set of execution units
2162A-2162N and samplers 2164A-2164N. In at least one
embodiment, each sub-core 2150A-2150N, 2160A-2160N
shares a set of shared resources 2170A-2170N. In at least
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one embodiment, shared resources 2170 include shared
cache memory and pixel operation logic.

FI1G. 22 illustrates a processor 2200, in accordance with at
least one embodiment. In at least one embodiment, proces-
sor 2200 may include, without limitation, logic circuits to
perform instructions. In at least one embodiment, processor
2200 may perform 1nstructions, including x86 instructions,
ARM 1nstructions, specialized instructions for ASICs, etc. In
at least one embodiment, processor 2210 may include reg-
isters to store packed data, such as 64-bit wide MMXTM
registers 1n microprocessors enabled with MMX technology
from Intel Corporation of Santa Clara, Calif. In at least one
embodiment, MMX registers, available 1n both integer and
floating point forms, may operate with packed data elements
that accompany SIMD and streaming SIMD extensions
(“SSE”) mstructions. In at least one embodiment, 128-bit
wide XMM registers relating to SSE2, SSE3, SSE4, AVX, or
beyond (referred to generically as “SSEx™) technology may
hold such packed data operands. In at least one embodiment,
processors 2210 may perform instructions to accelerate
CUDA programs.

In at least one embodiment, processor 2200 includes an
in-order front end (“front end”) 2201 to fetch instructions to
be executed and prepare instructions to be used later in
processor pipeline. In at least one embodiment, front end
2201 may include several units. In at least one embodiment,
an 1instruction prefetcher 2226 fetches instructions from
memory and feeds instructions to an instruction decoder
2228 which 1n turn decodes or interprets instructions. For
example, 1n at least one embodiment, instruction decoder
2228 decodes a received 1instruction into one or more
operations called “micro-instructions” or “micro-opera-
tions” (also called “micro ops” or “vops”) for execution. In
at least one embodiment, instruction decoder 2228 parses
instruction mmto an opcode and corresponding data and
control fields that may be used by micro-architecture to
perform operations. In at least one embodiment, a trace
cache 2230 may assemble decoded uops into program
ordered sequences or traces in a uop queue 2234 for execu-
tfion. In at least one embodiment, when trace cache 2230
encounters a complex instruction, a microcode ROM 2232
provides uops needed to complete an operation.

In at least one embodiment, some instructions may be
converted into a single micro-op, whereas others need
several micro-ops to complete full operation. In at least one
embodiment, 11 more than four micro-ops are needed to
complete an instruction, instruction decoder 2228 may
access microcode ROM 2232 to perform instruction. In at
least one embodiment, an mnstruction may be decoded 1nto a
small number of micro-ops for processing at instruction
decoder 2228. In at least one embodiment, an nstruction
may be stored within microcode ROM 2232 should a
number of micro-ops be needed to accomplish operation. In
at least one embodiment, trace cache 2230 refers to an entry
point programmable logic array (“PLA™) to determine a
correct micro-instruction pointer for reading microcode
sequences to complete one or more 1nstructions from micro-
code ROM 2232. In at least one embodiment, alter micro-
code ROM 2232 finishes sequencing micro-ops for an
instruction, front end 2201 of machine may resume fetching
micro-ops from trace cache 2230.

In at least one embodiment, out-of-order execution engine
(“out of order engine”) 2203 may prepare instructions for
execution. In at least one embodiment, out-of-order execu-
tion logic has a number of buflers to smooth out and re-order
the tlow of instructions to optimize performance as they go
down a pipeline and get scheduled for execution. Out-oi-
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order execution engine 2203 includes, without limitation, an
allocator/register renamer 2240, a memory uop queue 2242,
an 1nteger/floating point uop queue 2244, a memory sched-
uler 2246, a fast scheduler 2202, a slow/general floating
point scheduler (*slow/general FP scheduler”) 2204, and a
simple floating point scheduler (“simple FP scheduler”)

2206. In at least one embodiment, fast schedule 2202,
slow/general floating point scheduler 2204, and simple
tfloating point scheduler 2206 are also collectively referred to
herein as “vop schedulers 2202, 2204, 2206.” Allocator/
register renamer 2240 allocates machine buflers and
resources that each uop needs 1n order to execute. In at least
one embodiment, allocator/register renamer 2240 renames
logic registers onto entries in a register file. In at least one
embodiment, allocator/register renamer 2240 also allocates

an entry for each uop in one of two uop queues, memory uop
queue 2242 for memory operations and integer/tloating

point uop queue 2244 for non-memory operations, 1n front
of memory scheduler 2246 and uop schedulers 2202, 2204,
2206. In at least one embodiment, uop schedulers 2202,
2204, 2206, determine when a uop 1s ready to execute based
on readiness of their dependent input register operand
sources and availability of execution resources uops need to
complete their operation. In at least one embodiment, fast
scheduler 2202 of at least one embodiment may schedule on
cach hall of main clock cycle while slow/general floating
point scheduler 2204 and simple floating point scheduler
2206 may schedule once per main processor clock cycle. In
at least one embodiment, vop schedulers 2202, 2204, 2206
arbitrate for dispatch ports to schedule vops for execution.

In at least one embodiment, execution block 2211
includes, without limitation, an 1nteger register file/bypass
network 2208, a tloating point register file/bypass network

(“FP register file/bypass network™) 2210, address generation

units (“AGUs™) 2212 and 2214, fast ALUs 2216 and 2218,
a slow ALU 2220, a floating point ALU (“FP”’) 2222, and a
floating point move unit (“FP move”) 2224. In at least one
embodiment, integer register file/bypass network 2208 and
floating point register file/bypass network 2210 are also

referred to herein as “register files 2208, 2210.” In at least
one embodiment, AGUSs 2212 and 2214, fast ALUs 2216

and 2218, slow ALU 2220, floating point ALU 2222, and
floating point move unit 2224 are also referred to herein as
“execution units 2212, 2214, 2216, 2218, 2220, 2222, and
2224 In at least one embodiment, an execution block may
include, without limitation, any number (including zero) and
type of register files, bypass networks, address generation
units, and execution units, 1 any combination.

In at least one embodiment, register files 2208, 2210 may
be arranged between uop schedulers 2202, 2204, 2206, and
execution units 2212, 2214, 2216, 2218, 2220, 2222, and
2224. In at least one embodiment, integer register file/bypass
network 2208 performs integer operations. In at least one
embodiment, floating point register file/bypass network
2210 performs tloating point operations. In at least one
embodiment, each of register files 2208, 2210 may include,
without limitation, a bypass network that may bypass or
torward just completed results that have not yet been written
into register file to new dependent uops. In at least one
embodiment, register files 2208, 2210 may communicate
data with each other. In at least one embodiment, integer
register file/bypass network 2208 may include, without
limitation, two separate register files, one register file for
low-order thirty-two bits of data and a second register file for
high order thirty-two bits of data. In at least one embodi-
ment, floating point register file/bypass network 2210 may
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include, without limitation, 128-bit wide entries because
floating point instructions typically have operands from 64
to 128 bits 1n width.

In at least one embodiment, execution units 2212, 2214,
2216, 2218, 2220, 2222, 2224 may execute 1nstructions. In
at least one embodiment, register files 2208, 2210 store
integer and tloating point data operand values that micro-
mstructions need to execute. In at least one embodiment,
processor 2200 may include, without limitation, any number
and combination of execution units 2212, 2214, 2216, 2218,
2220, 2222, 2224, In at least one embodiment, floating point
ALU 2222 and floating point move unit 2224 may execute
floating point, MMX, SIMD, AVX and SSE, or other opera-
tions. In at least one embodiment, floating point ALU 2222
may include, without limitation, a 64-bit by 64-bit floating
point divider to execute divide, square root, and remainder
micro ops. In at least one embodiment, 1nstructions 1mvolv-
ing a floating point value may be handled with floating point
hardware. In at least one embodiment, AL U operations may
be passed to fast ALUs 2216, 2218. In at least one embodi-
ment, fast ALUS 2216, 2218 may execute fast operations
with an eflective latency of half a clock cycle. In at least one
embodiment, most complex integer operations go to slow
ALU 2220 as slow ALU 2220 may include, without limi-
tation, integer execution hardware for long-latency type of
operations, such as a multiplier, shifts, flag logic, and branch
processing. In at least one embodiment, memory load/store
operations may be executed by AGUs 2212, 2214. In at least
one embodiment, fast ALLU 2216, fast ALU 2218, and slow
ALU 2220 may perform integer operations on 64-bit data
operands. In at least one embodiment, fast ALU 2216, fast
ALU 2218, and slow ALU 2220 may be implemented to
support a variety of data bit sizes including sixteen, thirty-
two, 128, 256, etc. In at least one embodiment, tloating point
ALU 2222 and floating point move unit 2224 may be
implemented to support a range of operands having bits of
various widths. In at least one embodiment, tfloating point
ALU 2222 and floating point move unit 2224 may operate
on 128-bit wide packed data operands in conjunction with
SIMD and multimedia instructions.

In at least one embodiment, uop schedulers 2202, 2204,
2206 dispatch dependent operations before parent load has
finmshed executing. In at least one embodiment, as uops may
be speculatively scheduled and executed 1n processor 2200,
processor 2200 may also include logic to handle memory
misses. In at least one embodiment, it a data load misses 1n
a data cache, there may be dependent operations 1n thight 1n
pipeline that have left a scheduler with temporarily incorrect
data. In at least one embodiment, a replay mechanism tracks
and re-executes instructions that use incorrect data. In at
least one embodiment, dependent operations might need to
be replayed and independent ones may be allowed to com-
plete. In at least one embodiment, schedulers and replay
mechanisms of at least one embodiment of a processor may
also be designed to catch instruction sequences for text
string comparison operations.

In at least one embodiment, the term “registers” may refer
to on-board processor storage locations that may be used as
part of istructions to identily operands. In at least one
embodiment, registers may be those that may be usable from
outside of a processor (from a programmer’s perspective). In
at least one embodiment, registers might not be limited to a
particular type of circuit. Rather, in at least one embodiment,
a register may store data, provide data, and perform func-
tions described herein. In at least one embodiment, registers
described herein may be implemented by circuitry within a
processor using any number of different techniques, such as
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dedicated physical registers, dynamically allocated physical
registers using register renaming, combinations ol dedicated
and dynamically allocated physical registers, etc. In at least
one embodiment, integer registers store 32-bit integer data.
A register file of at least one embodiment also contains eight
multimedia SIMD registers for packed data.

FI1G. 23 illustrates a processor 2300, 1n accordance with at
least one embodiment. In at least one embodiment, proces-
sor 2300 1includes, without limitation, one or more processor
cores (“cores”) 2302A-2302N, an integrated memory con-
troller 2314, and an integrated graphics processor 2308. In
at least one embodiment, processor 2300 can include addi-
tional cores up to and including additional processor core
2302N represented by dashed lined boxes. In at least one
embodiment, each of processor cores 2302A-2302N
includes one or more internal cache units 2304A-2304N. In
at least one embodiment, each processor core also has access
to one or more shared cached units 2306.

In at least one embodiment, internal cache units 2304 A.-
2304N and shared cache units 2306 represent a cache
memory hierarchy within processor 2300. In at least one
embodiment, cache memory units 2304A-2304N may
include at least one level of 1instruction and data cache within
cach processor core and one or more levels of shared
mid-level cache, such as an 1.2, L3, Level 4 (“L4”), or other
levels of cache, where a highest level of cache belore
external memory 1s classified as an LLC. In at least one
embodiment, cache coherency logic maintains coherency
between various cache units 2306 and 2304A-2304N.

In at least one embodiment, processor 2300 may also
include a set of one or more bus controller units 2316 and a
system agent core 2310. In at least one embodiment, one or
more bus controller units 2316 manage a set of peripheral
buses, such as one or more PCI or PCI express buses. In at
least one embodiment, system agent core 2310 provides
management functionality for various processor compo-
nents. In at least one embodiment, system agent core 2310
includes one or more mtegrated memory controllers 2314 to
manage access to various external memory devices (not
shown).

In at least one embodiment, one or more of processor
cores 2302A-2302N include support for simultaneous multi-
threading. In at least one embodiment, system agent core
2310 includes components for coordinating and operating
processor cores 2302A-2302N during multi-threaded pro-
cessing. In at least one embodiment, system agent core 2310
may additionally include a power control unit (“PCU™),
which includes logic and components to regulate one or
more power states of processor cores 2302A-2302N and
graphics processor 2308.

In at least one embodiment, processor 2300 additionally
includes graphics processor 2308 to execute graphics pro-
cessing operations. In at least one embodiment, graphics
processor 2308 couples with shared cache units 2306, and
system agent core 2310, including one or more integrated
memory controllers 2314. In at least one embodiment,
system agent core 2310 also includes a display controller
2311 to dnive graphics processor output to one or more
coupled displays. In at least one embodiment, display con-
troller 2311 may also be a separate module coupled with
graphics processor 2308 via at least one interconnect, or may
be mtegrated within graphics processor 2308.

In at least one embodiment, a ring based interconnect unit
2312 1s used to couple internal components of processor
2300. In at least one embodiment, an alternative intercon-
nect unit may be used, such as a point-to-point interconnect,
a switched interconnect, or other techniques. In at least one
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embodiment, graphics processor 2308 couples with ring
interconnect 2312 via an I/0O link 2313.

In at least one embodiment, I/O link 2313 represents at
least one of multiple varnieties of IO interconnects, including
an on package I/O interconnect which facilitates communi-
cation between various processor components and a high-
performance embedded memory module 2318, such as an
eDRAM module. In at least one embodiment, each of
processor cores 2302A-2302N and graphics processor 2308
use embedded memory modules 2318 as a shared LLC.

In at least one embodiment, processor cores 2302A-
2302N are homogeneous cores executing a common 1nstruc-
tion set architecture. In at least one embodiment, processor
cores 2302A-2302N are heterogeneous 1n terms of ISA,
where one or more of processor cores 2302A-2302N execute
a common 1nstruction set, while one or more other cores of
processor cores 2302A-23-02N executes a subset of a com-
mon instruction set or a different instruction set. In at least
one embodiment, processor cores 2302A-2302N are hetero-
geneous 1n terms ol microarchitecture, where one or more
cores having a relatively higher power consumption couple
with one or more cores having a lower power consumption.
In at least one embodiment, processor 2300 can be 1mple-
mented on one or more chips or as an SoC integrated circuait.

FIG. 24 illustrates a graphics processor core 2400, 1n
accordance with at least one embodiment described. In at
least one embodiment, graphics processor core 2400 is
included within a graphics core array. In at least one
embodiment, graphics processor core 2400, sometimes
referred to as a core slice, can be one or multiple graphics
cores within a modular graphics processor. In at least one
embodiment, graphics processor core 2400 1s exemplary of
one graphics core slice, and a graphics processor as
described herein may include multiple graphics core slices
based on target power and performance envelopes. In at least
one embodiment, each graphics core 2400 can include a
fixed function block 2430 coupled with multiple sub-cores
2401 A-2401F, also referred to as sub-slices, that include
modular blocks of general-purpose and fixed function logic.

In at least one embodiment, fixed function block 2430
includes a geometry/fixed function pipeline 2436 that can be
shared by all sub-cores i1n graphics processor 2400, for
example, 1n lower performance and/or lower power graphics
processor implementations. In at least one embodiment,
geometry/fixed function pipeline 2436 includes a 3D fixed
function pipeline, a video front-end unit, a thread spawner
and thread dispatcher, and a umfied return buller manager,
which manages unified return builers.

In at least one embodiment, fixed function block 2430
also includes a graphics SoC interface 2437, a graphics
microcontroller 2438, and a media pipeline 2439. Graphics
SoC interface 2437 provides an interface between graphics
core 2400 and other processor cores within an SoC 1nte-
grated circuit. In at least one embodiment, graphics micro-
controller 2438 1s a programmable sub-processor that is
configurable to manage various functions of graphics pro-
cessor 2400, including thread dispatch, scheduling, and
pre-emption. In at least one embodiment, media pipeline
2439 1includes logic to facilitate decoding, encoding, pre-
processing, and/or post-processing of multimedia data,
including image and video data. In at least one embodiment,
media pipeline 2439 implements media operations via
requests to compute or sampling logic within sub-cores
2401-2401F.

In at least one embodiment, SoC interface 2437 enables
graphics core 2400 to communicate with general-purpose
application processor cores (e.g., CPUs) and/or other com-
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ponents within an SoC, including memory hierarchy ele-
ments such as a shared LLC memory, system RAM, and/or
embedded on-chip or on-package DRAM. In at least one
embodiment, SoC interface 2437 can also enable commu-
nication with fixed function devices within an SoC, such as
camera 1imaging pipelines, and enables use of and/or imple-
ments global memory atomics that may be shared between
graphics core 2400 and CPUs within an SoC. In at least one
embodiment, SoC interface 2437 can also implement power
management controls for graphics core 2400 and enable an
interface between a clock domain of graphic core 2400 and
other clock domains within an SoC. In at least one embodi-
ment, SoC interface 2437 enables receipt of command
buflers from a command streamer and global thread dis-
patcher that are configured to provide commands and
instructions to each of one or more graphics cores within a
graphics processor. In at least one embodiment, commands
and instructions can be dispatched to media pipeline 2439,
when media operations are to be performed, or a geometry
and fixed function pipeline (e.g., geometry and fixed func-
tion pipeline 2436, geometry and fixed function pipeline
2414) when graphics processing operations are to be per-
formed.

In at least one embodiment, graphics microcontroller
2438 can be configured to perform various scheduling and
management tasks for graphics core 2400. In at least one
embodiment, graphics microcontroller 2438 can perform
graphics and/or compute workload scheduling on various
graphics parallel engines within execution unit (EU) arrays
2402A-2402F, 2404A-2404F within sub-cores 2401A-
2401F. In at least one embodiment, host software executing
on a CPU core of an SoC including graphics core 2400 can
submit workloads one of multiple graphic processor door-
bells, which invokes a scheduling operation on an appro-
priate graphics engine. In at least one embodiment, sched-
uling operations include determining which workload to run
next, submitting a workload to a command streamer, pre-
empting existing workloads running on an engine, monitor-
ing progress of a workload, and notifying host software
when a workload 1s complete. In at least one embodiment,
graphics microcontroller 2438 can also facilitate low-power
or 1dle states for graphics core 2400, providing graphics core
2400 with an ability to save and restore registers within
graphics core 2400 across low-power state transitions 1nde-
pendently from an operating system and/or graphics driver
soltware on a system.

In at least one embodiment, graphics core 2400 may have
greater than or fewer than illustrated sub-cores 2401A-
2401F, up to N modular sub-cores. For each set of N
sub-cores, 1n at least one embodiment, graphics core 2400
can also include shared function logic 2410, shared and/or
cache memory 2412, a geometry/fixed function pipeline
2414, as well as additional fixed function logic 2416 to
accelerate various graphics and compute processing opera-
tions. In at least one embodiment, shared tunction logic
2410 can include logic units (e.g., sampler, math, and/or
inter-thread communication logic) that can be shared by
cach N sub-cores within graphics core 2400. Shared and/or
cache memory 2412 can be an LLC for N sub-cores 2401 A-
2401F within graphics core 2400 and can also serve as
shared memory that 1s accessible by multiple sub-cores. In
at least one embodiment, geometry/fixed function pipeline
2414 can be included instead of geometry/fixed function
pipeline 2436 within fixed function block 2430 and can
include same or similar logic unaits.

In at least one embodiment, graphics core 2400 includes
additional fixed function logic 2416 that can include various
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fixed function acceleration logic for use by graphics core
2400. In at least one embodiment, additional fixed function
logic 2416 1ncludes an additional geometry pipeline for use
in position only shading. In position-only shading, at least
two geometry pipelines exist, whereas 1 a full geometry
pipeline within geometry/fixed function pipeline 2416,
2436, and a cull pipeline, which 1s an additional geometry
pipeline which may be included within additional fixed
function logic 2416. In at least one embodiment, cull pipe-
line 1s a trimmed down version of a full geometry pipeline.
In at least one embodiment, a full pipeline and a cull pipeline
can execute different instances of an application, each
instance having a separate context. In at least one embodi-
ment, position only shading can hide long cull runs of
discarded triangles, enabling shading to be completed earlier
in some 1nstances. For example, 1n at least one embodiment,
cull pipeline logic within additional fixed function logic
2416 can execute position shaders in parallel with a main
application and generally generates critical results faster
than a full pipeline, as a cull pipeline fetches and shades
position attribute of vertices, without performing rasteriza-
tion and rendering of pixels to a frame bufler. In at least one
embodiment, a cull pipeline can use generated critical results
to compute visibility information for all triangles without
regard to whether those triangles are culled. In at least one
embodiment, a full pipeline (which 1n this instance may be
referred to as a replay pipeline) can consume visibility
information to skip culled triangles to shade only visible
triangles that are finally passed to a rasterization phase.

In at least one embodiment, additional fixed function
logic 2416 can also include general purpose processing
acceleration logic, such as fixed function matrix multiplica-
tion logic, for accelerating CUDA programs.

In at least one embodiment, each graphics sub-core
2401 A-2401F 1ncludes a set of execution resources that may
be used to perform graphics, media, and compute operations
1in response to requests by graphics pipeline, media pipeline,
or shader programs. In at least one embodiment, graphics
sub-cores 2401A-2401F include multiple EU arrays 2402 A-
2402F, 2404 A-2404F, thread dispatch and inter-thread com-
munication (“TD/IC”) logic 2403A-2403F, a 3D (e.g., tex-
ture) sampler 2405A-2405F, a media sampler 2406 A-2406F,
a shader processor 2407A-2407F, and shared local memory
(“SLM”) 2408A-2408F. EU arrays 2402A-2402F, 2404 A-
2404F each include multiple execution units, which are
GPGPUs capable of performing floating-point and integer/
fixed-point logic operations in service of a graphics, media,

or compute operation, including graphics, media, or com-
pute shader programs. In at least one embodiment, TD/IC
logic 2403A-2403F performs local thread dispatch and
thread control operations for execution units within a sub-
core and facilitate communication between threads execut-
ing on execution units of a sub-core. In at least one embodi-
ment, 3D sampler 2405A-2405F can read texture or other
3D graphics related data into memory. In at least one
embodiment, 3D sampler can read texture data differently
based on a configured sample state and texture format
associated with a given texture. In at least one embodiment,
media sampler 2406A-2406F can perform similar read
operations based on a type and format associated with media
data. In at least one embodiment, each graphics sub-core
2401A-2401F can alternately include a unified 3D and
media sampler. In at least one embodiment, threads execut-
ing on execution units within each of sub-cores 2401A-

2401F can make use of shared local memory 2408 A-2408F
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within each sub-core, to enable threads executing within a
thread group to execute using a common pool of on-chip
memory.

FIG. 25 illustrates a parallel processing unit (“PPU”)
2500, 1n accordance with at least one embodiment. In at least
one embodiment, PPU 2500 1s configured with machine-
readable code that, 1t executed by PPU 23500, causes PPU
2500 to perform some or all of processes and techniques
described herein. In at least one embodiment, PPU 2500 1s
a multi-threaded processor that 1s implemented on one or
more integrated circuit devices and that utilizes multithread-
ing as a latency-hiding technique designed to process com-
puter-readable mstructions (also referred to as machine-
readable instructions or simply instructions) on multiple
threads in parallel. In at least one embodiment, a thread
refers to a thread of execution and 1s an 1nstantiation of a set
of mstructions configured to be executed by PPU 2500. In at
least one embodiment, PPU 2500 1s a GPU configured to
implement a graphics rendering pipeline for processing
three-dimensional (“3D”’) graphics data 1n order to generate
two-dimensional (“2D”) image data for display on a display
device such as an LLCD device. In at least one embodiment,
PPU 2500 1s utilized to perform computations such as linear
algebra operations and machine-learning operations. FIG.
235 1illustrates an example parallel processor for illustrative
purposes only and should be construed as a non-limiting
example of a processor architecture that may be imple-
mented 1n at least one embodiment.

In at least one embodiment, one or more PPUs 2500 are
configured to accelerate High Performance Computing
(“HPC”), data center, and machine learning applications. In
at least one embodiment, one or more PPUs 2500 are
configured to accelerate CUDA programs. In at least one
embodiment, PPU 2500 includes, without limitation, an I/O
unit 2506, a front-end unit 2510, a scheduler unit 2512, a
work distribution unit 2514, a hub 2516, a crossbar (“Xbar™)
2520, one or more general processing clusters (“GPCs”)
2518, and one or more partition units (“memory partition
units”) 2522. In at least one embodiment, PPU 2500 1s
connected to a host processor or other PPUs 2500 via one or
more high-speed GPU interconnects (“GPU iterconnects™)
2508. In at least one embodiment, PPU 2500 1s connected to
a host processor or other peripheral devices via a system bus
or interconnect 2502. In at least one embodiment, PPU 2500
1s connected to a local memory comprising one or more
memory devices (“memory”’) 2504. In at least one embodi-
ment, memory devices 2504 include, without limitation, one
or more dynamic random access memory (DRAM) devices.
In at least one embodiment, one or more DRAM devices are
configured and/or configurable as high-bandwidth memory
(“HBM”) subsystems, with multiple DRAM dies stacked
within each device.

In at least one embodiment, high-speed GPU interconnect
2508 may refer to a wire-based multi-lane communications
link that 1s used by systems to scale and include one or more
PPUs 2500 combined with one or more CPUs, supports
cache coherence between PPUs 2500 and CPUs, and CPU
mastering. In at least one embodiment, data and/or com-
mands are transmitted by high-speed GPU interconnect
2508 through hub 2516 to/from other units of PPU 2500
such as one or more copy engines, video encoders, video
decoders, power management units, and other components
which may not be explicitly illustrated in FIG. 25.

In at least one embodiment, I/O unit 2506 1s configured to
transmit and receive communications (e.g., commands,
data) from a host processor (not illustrated 1n FIG. 235) over
system bus 2502. In at least one embodiment, I/O unit 2506
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communicates with host processor directly via system bus
2502 or through one or more mtermediate devices such as a
memory bridge. In at least one embodiment, I/O umt 2506
may communicate with one or more other processors, such
as one or more of PPUs 2500 via system bus 2502. In at least
one embodiment, I/O unit 2506 implements a PCle interface
for communications over a PCle bus. In at least one embodi-
ment, I/O unit 2506 implements mterfaces for communicat-
ing with external devices.

In at least one embodiment, I/O unit 2506 decodes packets
received via system bus 2502. In at least one embodiment,
at least some packets represent commands configured to
cause PPU 2500 to perform various operations. In at least
one embodiment, I/O unit 2506 transmits decoded com-
mands to various other units of PPU 2500 as specified by
commands. In at least one embodiment, commands are
transmitted to front-end unit 2510 and/or transmitted to hub
2516 or other units of PPU 2500 such as one or more copy
engines, a video encoder, a video decoder, a power man-
agement umt, etc. (not explicitly illustrated in FIG. 25). In
at least one embodiment, I/O unit 2506 1s configured to route
communications between and among various logical units of
PPU 2500.

In at least one embodiment, a program executed by host
processor encodes a command stream 1n a buller that pro-
vides workloads to PPU 2500 for processing. In at least one
embodiment, a workload comprises instructions and data to
be processed by those mstructions. In at least one embodi-
ment, buller 1s a region 1 a memory that 1s accessible (e.g.,
read/write) by both a host processor and PPU 2500—a host
interface unit may be configured to access bufler 1n a system
memory connected to system bus 2502 via memory requests
transmitted over system bus 2502 by I/O unit 2506. In at
least one embodiment, a host processor writes a command
stream to a buller and then transmits a pointer to the start of
the command stream to PPU 23500 such that front-end unit
2510 recerves pointers to one or more command streams and
manages one or more command streams, reading commands
from command streams and forwarding commands to vari-
ous units of PPU 2500.

In at least one embodiment, front-end unit 2510 1s coupled
to scheduler unit 2512 that configures various GPCs 2518 to
process tasks defined by one or more command streams. In
at least one embodiment, scheduler unit 2512 1s configured
to track state information related to various tasks managed
by scheduler unit 2512 where state information may indicate
which of GPCs 2518 a task is assigned to, whether task 1s
active or 1mactive, a priority level associated with task, and
so forth. In at least one embodiment, scheduler unit 2512
manages execution of a plurality of tasks on one or more of
GPCs 2518.

In at least one embodiment, scheduler unit 2512 1is
coupled to work distribution unit 2514 that 1s configured to
dispatch tasks for execution on GPCs 2518. In at least one
embodiment, work distribution unit 2514 tracks a number of
scheduled tasks received from scheduler unit 2512 and work
distribution unit 2514 manages a pending task pool and an
active task pool for each of GPCs 2518. In at least one
embodiment, pending task pool comprises a number of slots
(e.g., 32 slots) that contain tasks assigned to be processed by
a particular GPC 2518; active task pool may comprise a
number of slots (e.g., 4 slots) for tasks that are actively being
processed by GPCs 2518 such that as one of GPCs 2518
completes execution of a task, that task i1s evicted from
active task pool for GPC 2518 and one of other tasks from
pending task pool 1s selected and scheduled for execution on
GPC 2518. In at least one embodiment, if an active task 1s




US 12,299,801 B2

45

idle on GPC 2518, such as while waiting for a data depen-
dency to be resolved, then the active task 1s evicted from
GPC 2518 and returned to a pending task pool while another
task 1n the pending task pool 1s selected and scheduled for
execution on GPC 2518.

In at least one embodiment, work distribution unit 2514
communicates with one or more GPCs 2518 via XBar 2520.
In at least one embodiment, XBar 2520 1s an interconnect
network that couples many units of PPU 2500 to other units
of PPU 2500 and can be configured to couple work distri-
bution unit 2514 to a particular GPC 2518. In at least one
embodiment, one or more other units of PPU 2500 may also
be connected to XBar 2520 via hub 2516.

In at least one embodiment, tasks are managed by sched-
uler unit 2512 and dispatched to one of GPCs 2518 by work
distribution unit 2514. GPC 2518 1s configured to process
task and generate results. In at least one embodiment, results
may be consumed by other tasks within GPC 2518, routed
to a different GPC 2518 via XBar 2520, or stored 1n memory
2504. In at least one embodiment, results can be written to
memory 2504 via partition units 2522, which implement a
memory interface for reading and writing data to/from
memory 2504. In at least one embodiment, results can be
transmitted to another PPU 2504 or CPU wvia high-speed
GPU interconnect 2508. In at least one embodiment, PPU
2500 1includes, without limitation, a number U of partition
units 2522 that 1s equal to number of separate and distinct
memory devices 2504 coupled to PPU 2500.

In at least one embodiment, a host processor executes a
driver kernel that implements an application programming
interface (“API”) that enables one or more applications
executing on host processor to schedule operations for
execution on PPU 2500. In at least one embodiment, mul-
tiple compute applications are simultaneously executed by
PPU 2500 and PPU 2500 provides 1solation, quality of
service (“(Q0S”), and independent address spaces for mul-
tiple compute applications. In at least one embodiment, an
application generates instructions (e.g., in the form of API
calls) that cause a driver kernel to generate one or more tasks
for execution by PPU 2500 and the driver kernel outputs
tasks to one or more streams being processed by PPU 2500.
In at least one embodiment, each task comprises one or more
groups of related threads, which may be referred to as a
warp. In at least one embodiment, a warp comprises a
plurality of related threads (e.g., 32 threads) that can be
executed in parallel. In at least one embodiment, cooperating
threads can refer to a plurality of threads including nstruc-
tions to perform a task and that exchange data through
shared memory.

FIG. 26 1llustrates a GPC 2600, in accordance with at least
one embodiment. In at least one embodiment, GPC 2600 1s
GPC 2518 of FIG. 25. In at least one embodiment, each GPC
2600 includes, without limitation, a number of hardware
units for processing tasks and each GPC 2600 includes,
without limitation, a pipeline manager 2602, a pre-raster
operations unit (“PROP”) 2604, a raster engine 2608, a work
distribution crossbar (“WDX”’) 2616, an MMU 2618, one or
more Data Processing Clusters (“DPCs”) 2606, and any
suitable combination of parts.

In at least one embodiment, operation of GPC 2600 1s
controlled by pipeline manager 2602. In at least one embodi-
ment, pipeline manager 2602 manages configuration of one
or more DPCs 2606 for processing tasks allocated to GPC
2600. In at least one embodiment, pipeline manager 2602
configures at least one of one or more DPCs 2606 to
implement at least a portion of a graphics rendering pipeline.
In at least one embodiment, DPC 2606 1s configured to
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execute a vertex shader program on a programmable stream-
ing multiprocessor (“SM™) 2614. In at least one embodi-
ment, pipeline manager 2602 1s configured to route packets
received from a work distribution unit to approprate logical
units within GPC 2600 and, in at least one embodiment,
some packets may be routed to fixed function hardware units
in PROP 2604 and/or raster engine 2608 while other packets
may be routed to DPCs 2606 for processing by a primitive
engine 2612 or SM 2614. In at least one embodiment,
pipeline manager 2602 configures at least one of DPCs 2606
to implement a computing pipeline. In at least one embodi-
ment, pipeline manager 2602 configures at least one of
DPCs 2606 to execute at least a portion of a CUDA program.

In at least one embodiment, PROP unit 2604 1s configured
to route data generated by raster engine 2608 and DPCs
2606 to a Raster Operations (“ROP”) unit 1n a partition unit,
such as memory partition unit 2522 described in more detail
above 1n conjunction with FIG. 25. In at least one embodi-
ment, PROP umt 2604 is configured to perform optimiza-
tions for color blending, organize pixel data, perform
address translations, and more. In at least one embodiment,
raster engine 2608 includes, without limitation, a number of
fixed function hardware units configured to perform various
raster operations and, 1 at least one embodiment, raster
engine 2608 includes, without limitation, a setup engine, a
coarse raster engine, a culling engine, a clipping engine, a
fine raster engine, a tile coalescing engine, and any suitable
combination thereof. In at least one embodiment, a setup
engine receives transformed vertices and generates plane
equations associated with geometric primitive defined by
vertices; plane equations are transmitted to a coarse raster
engine to generate coverage information (e.g., an X, y
coverage mask for a tile) for a primitive; the output of the
coarse raster engine 1s transmitted to a culling engine where
fragments associated with a primitive that fail a z-test are
culled, and transmitted to a clipping engine where fragments
lying outside a viewing frustum are clipped. In at least one
embodiment, fragments that survive clipping and culling are
passed to a fine raster engine to generate attributes for pixel
fragments based on plane equations generated by a setup
engine. In at least one embodiment, the output of raster
engine 2608 comprises fragments to be processed by any
suitable entity such as by a fragment shader implemented
within DPC 2606.

In at least one embodiment, each DPC 2606 included i1n
GPC 2600 comprise, without limitation, an M-Pipe Con-
troller (“MPC”") 2610; primitive engine 2612; one or more
SMs 2614; and any suitable combination thereof. In at least
one embodiment, MPC 2610 controls operation of DPC
2606, routing packets recerved from pipeline manager 2602
to appropriate units 1 DPC 2606. In at least one embodi-
ment, packets associated with a vertex are routed to primi-
tive engine 2612, which 1s configured to fetch vertex attri-
butes associated with vertex from memory; in contrast,
packets associated with a shader program may be transmit-
ted to SM 2614.

In at least one embodiment, SM 2614 comprises, without
limitation, a programmable streaming processor that 1s con-
figured to process tasks represented by a number of threads.
In at least one embodiment, SM 2614 1s multi-threaded and
configured to execute a plurality of threads (e.g., 32 threads)
from a particular group of threads concurrently and imple-
ments a SIMD architecture where each thread 1n a group of
threads (e.g., a warp) 1s configured to process a different set
of data based on same set of instructions. In at least one
embodiment, all threads 1n group of threads execute same
instructions. In at least one embodiment, SM 2614 1mple-
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ments a SIMT architecture wherein each thread in a group
of threads 1s configured to process a different set of data
based on same set of instructions, but where individual
threads 1n group of threads are allowed to diverge during
execution. In at least one embodiment, a program counter, a
call stack, and an execution state 1s maintained for each
warp, enabling concurrency between warps and serial
execution within warps when threads within a warp diverge.
In another embodiment, a program counter, a call stack, and
an execution state 1s maintained for each individual thread,
enabling equal concurrency between all threads, within and
between warps. In at least one embodiment, an execution
state 1s maintained for each individual thread and threads
executing the same instructions may be converged and
executed 1n parallel for better etliciency. At least one
embodiment of SM 2614 1s described 1n more detail 1n
conjunction with FIG. 27.

In at least one embodiment, MMU 2618 provides an
interface between GPC 2600 and a memory partition unit
(c.g., partition umt 2522 of FIG. 25) and MMU 2618
provides ftranslation of wvirtual addresses into physical
addresses, memory protection, and arbitration of memory
requests. In at least one embodiment, MMU 2618 provides
one or more translation lookaside buflers (TLBs) for per-
forming translation of wvirtual addresses into physical
addresses 1n memory.

FIG. 27 illustrates a streaming multiprocessor (“SM™)
2700, 1n accordance with at least one embodiment. In at least
one embodiment, SM 2700 1s SM 2614 of FIG. 26. In at least
one embodiment, SM 2700 i1ncludes, without limitation, an
instruction cache 2702; one or more scheduler units 2704 a
register file 2708; one or more processing cores (“‘cores’)
2710; one or more special function units (“SFUs™) 2712; one
or more LSUs 2714; an interconnect network 2716; a shared
memory/LL1 cache 2718; and any suitable combination
thereof. In at least one embodiment, a work distribution unit
dispatches tasks for execution on GPCs of parallel process-
ing units (PPUs) and each task 1s allocated to a particular
Data Processing Cluster (DPC) within a GPC and, 1f a task
1s associated with a shader program, then the task 1s allo-
cated to one of SMs 2700. In at least one embodiment,
scheduler unit 2704 receives tasks from a work distribution
unit and manages instruction scheduling for one or more
thread blocks assigned to SM 2700. In at least one embodi-
ment, scheduler unit 2704 schedules thread blocks for
execution as warps of parallel threads, wherein each thread
block 1s allocated at least one warp. In at least one embodi-
ment, each warp executes threads. In at least one embodi-
ment, scheduler umit 2704 manages a plurality of diflerent
thread blocks, allocating warps to different thread blocks and
then dispatching instructions from a plurality of diflerent
cooperative groups to various functional units (e.g., process-
ing cores 2710, SFUs 2712, and LSUs 2714) during each
clock cycle.

In at least one embodiment, “cooperative groups” may
refer to a programming model for organizing groups of
communicating threads that allows developers to express
granularity at which threads are communicating, enabling
expression of richer, more eflicient parallel decompositions.
In at least one embodiment, cooperative launch APIs support
synchronization amongst thread blocks for execution of
parallel algorithms. In at least one embodiment, APIs of
conventional programming models provide a single, simple
construct for synchronizing cooperating threads: a barrier
across all threads of a thread block (e.g., syncthreads( )
function). However, 1n at least one embodiment, program-
mers may define groups of threads at smaller than thread
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block granularities and synchronize within defined groups to
enable greater performance, design flexibility, and software
reuse 1n the form of collective group-wide function inter-
faces. In at least one embodiment, cooperative groups enable
programmers to define groups of threads explicitly at sub-
block and multi-block granularities, and to perform collec-
tive operations such as synchronization on threads in a
cooperative group. In at least one embodiment, a sub-block
granularity 1s as small as a single thread. In at least one
embodiment, a programming model supports clean compo-
sition across software boundaries, so that libraries and utility
functions can synchronize sately within their local context
without having to make assumptions about convergence. In
at least one embodiment, cooperative group primitives
enable new patterns of cooperative parallelism, 1including,
without limitation, producer-consumer parallelism, oppor-
tunistic parallelism, and global synchronization across an
entire grid of thread blocks.

In at least one embodiment, a dispatch unit 2706 1s

configured to transmit instructions to one or more of func-
tional units and scheduler unit 2704 includes, without limi-
tation, two dispatch units 2706 that enable two diflerent
istructions from same warp to be dispatched during each
clock cycle. In at least one embodiment, each scheduler unit
2704 includes a single dispatch unit 2706 or additional
dispatch units 2706.

In at least one embodiment, each SM 2700, 1n at least one
embodiment, includes, without limitation, register file 2708
that provides a set of registers for functional units of SM
2700. In at least one embodiment, register file 2708 1is
divided between each of the functional units such that each
functional unit 1s allocated a dedicated portion of register file
2708. In at least one embodiment, register file 2708 1is
divided between diflerent warps being executed by SM 2700
and register file 2708 provides temporary storage for oper-
ands connected to data paths of functional units. In at least
one embodiment, each SM 2700 comprises, without limita-
tion, a plurality of L processing cores 2710. In at least one
embodiment, SM 2700 includes, without limitation, a large
number (e.g., 128 or more) of distinct processing cores
2710. In at least one embodiment, each processing core 2710
includes, without limitation, a fully-pipelined, single-preci-
sion, double-precision, and/or mixed precision processing
umt that includes, without limitation, a floating point arith-
metic logic unit and an integer arthmetic logic unit. In at
least one embodiment, floating point arithmetic logic units
implement IEEE 754-2008 standard for floating point arith-
metic. In at least one embodiment, processing cores 2710
include, without limitation, 64 single-precision (32-bit)
floating point cores, 64 integer cores, 32 double-precision
(64-b1t) floating point cores, and 8 tensor cores.

In at least one embodiment, tensor cores are configured to
perform matrix operations. In at least one embodiment, one
or more tensor cores are included 1n processing cores 2710.
In at least one embodiment, tensor cores are configured to
perform deep learning matrix arithmetic, such as convolu-
tion operations for neural network training and inferencing.
In at least one embodiment, each tensor core operates on a
4x4 matrix and performs a matrix multiply and accumulate
operation D=AxB+C, where A, B, C, and D are 4x4 matri-
ces.

In at least one embodiment, matrix multiply inputs A and
B are 16-bit tloating point matrices and accumulation matri-
ces C and D are 16-bit floating point or 32-bit tloating point
matrices. In at least one embodiment, tensor cores operate
on 16-bit tloating point input data with 32-bit floating point
accumulation. In at least one embodiment, 16-bit tloating
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point multiply uses 64 operations and results in a full
precision product that 1s then accumulated using 32-bit
floating point a2’/1tion with other intermediate products for
a 4x4x4 matrix multiply. Tensor cores are used to perform
much larger two-dimensional or higher dimensional matrix
operations, built up from these smaller elements, 1n at least
one embodiment. In at least one embodiment, an API, such
as a CUDA-C++ API, exposes specialized matrix load,
matrix multiply and accumulate, and matrix store operations
to efliciently use tensor cores from a CUDA-C++ program.
In at least one embodiment, at the CUDA level, a warp-level
interface assumes 16x16 size matrices spanning all 32
threads of a warp.

In at least one embodiment, each SM 2700 comprises,
without limitation, M SFUs 2712 that perform special func-
tions (e.g., attribute evaluation, reciprocal square root, and
like). In at least one embodiment, SFUs 2712 include,
without limitation, a tree traversal unit configured to traverse
a hierarchical tree data structure. In at least one embodiment,
SFUs 2712 include, without limitation, a texture unit con-
figured to perform texture map {filtering operations. In at
least one embodiment, texture units are configured to load
texture maps (e.g., a 2D array of texels) from memory and
sample texture maps to produce sampled texture values for
use 1n shader programs executed by SM 2700. In at least one
embodiment, texture maps are stored in shared memory/L1
cache 2718. In at least one embodiment, texture units
implement texture operations such as filtering operations
using mip-maps (e.g., texture maps of varying levels of
detail). In at least one embodiment, each SM 2700 1ncludes,
without limitation, two texture units.

In at least one embodiment, each SM 2700 comprises,
without limitation, N LSUs 2714 that implement load and
store operations between shared memory/LL1 cache 2718 and
register file 2708. In at least one embodiment, each SM 2700
includes, without limitation, interconnect network 2716 that
connects each of the functional units to register file 2708 and
L.SU 2714 to register file 2708 and shared memory/L1 cache
2718. In at least one embodiment, interconnect network
2716 1s a crossbar that can be configured to connect any of
the functional units to any of the registers in register file
2708 and connect LSUs 2714 to register file 2708 and
memory locations in shared memory/L1 cache 2718.

In at least one embodiment, shared memory/LL1 cache
2718 1s an array ol on-chip memory that allows for data
storage and communication between SM 2700 and a primi-
tive engine and between threads in SM 2700. In at least one
embodiment, shared memory/LL1 cache 2718 comprises,
without limitation, 128 KB of storage capacity and 1s in a
path from SM 2700 to a partition umt. In at least one
embodiment, shared memory/LL1 cache 2718 1s used to
cache reads and writes. In at least one embodiment, one or
more of shared memory/LL1 cache 2718, L2 cache, and
memory are backing stores.

In at least one embodiment, combining data cache and
shared memory functionality into a single memory block
provides improved performance for both types of memory
accesses. In at least one embodiment, capacity 1s used or 1s
usable as a cache by programs that do not use shared
memory, such as 1f shared memory 1s configured to use half
of capacity, texture and load/store operations can use
remaining capacity. In at least one embodiment, integration
within shared memory/L1 cache 2718 enables shared
memory/LL1 cache 2718 to function as a high-throughput
conduit for streaming data while simultaneously providing
high-bandwidth and low-latency access to frequently reused
data. In at least one embodiment, when configured for
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general purpose parallel computation, a simpler configura-
tion can be used compared with graphics processing. In at

least one embodiment, fixed function GPUs are bypassed,
creating a much simpler programming model. In at least one
embodiment and 1n a general purpose parallel computation
configuration, a work distribution umt assigns and distrib-
utes blocks of threads directly to DPCs. In at least one
embodiment, threads 1n a block execute the same program,
using a unique thread ID in a calculation to ensure each
thread generates unique results, using SM 2700 to execute a
program and perform calculations, shared memory/LL1 cache
2718 to communicate between threads, and LSU 2714 to
read and write global memory through shared memory/L1
cache 2718 and a memory partition unit. In at least one
embodiment, when configured for general purpose parallel
computation, SM 2700 writes commands that scheduler unit
2704 can use to launch new work on DPCs.

In at least one embodiment, PPU 1s included in or coupled
to a desktop computer, a laptop computer, a tablet computer,
servers, supercomputers, a smart-phone (e.g., a wireless,
hand-held device), a PDA, a digital camera, a vehicle, a head
mounted display, a hand-held electronic device, and more. In
at least one embodiment, PPU 1s embodied on a single
semiconductor substrate. In at least one embodiment, PPU 1s
included 1 an SoC along with one or more other devices
such as additional PPUs, memory, a RISC CPU, an MMU,
a digital-to-analog converter (“DAC”), and like.

In at least one embodiment, PPU may be included on a
graphics card that includes one or more memory devices. In
at least one embodiment, a graphics card may be configured
to interface with a PCle slot on a motherboard of a desktop

computer. In at least one embodiment, PPU may be an
integrated GPU (“1GPU”) included in chipset of mother-

board.

Software Constructions for General-Purpose
Computing,

The following FIGS. set forth, without limitation, exem-
plary software constructs for implementing at least one
embodiment.

FIG. 28 illustrates a software stack of a programming,
platiorm, 1n accordance with at least one embodiment. In at
least one embodiment, a programming platform 1s a plat-
form for leveraging hardware on a computing system to
accelerate computational tasks. A programming platform
may be accessible to software developers through libraries,
compiler directives, and/or extensions to programming lan-
guages, 1n at least one embodiment. In at least one embodi-
ment, a programming platform may be, but 1s not limited to,
CUDA, Radeon Open Compute Platform (*ROCm”),
OpenCL (OpenCL™ 15 developed by Khronos group),
SYCL, or Intel One APL.

In at least one embodiment, a software stack 2800 of a
programming platform provides an execution environment
for an application 2801. In at least one embodiment, appli-
cation 2801 may include any computer software capable of
being launched on software stack 2800. In at least one
embodiment, application 2801 may include, but 1s not
limited to, an artificial intelligence (“AI”’)/machine learning
(“ML"”") application, a high performance computing (“HPC”)
application, a virtual desktop infrastructure (“VDI”), or a
data center workload.

In at least one embodiment, application 2801 and soft-
ware stack 2800 run on hardware 2807. Hardware 2807 may
include one or more GPUs, CPUs, FPGAs, Al engines,

and/or other types of compute devices that support a pro-
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gramming platform, 1n at least one embodiment. In at least
one embodiment, such as with CUDA, software stack 2800
may be vendor specific and compatible with only devices
from particular vendor(s). In at least one embodiment, such
as 1 with OpenCL, software stack 2800 may be used with
devices from different vendors. In at least one embodiment,
hardware 2807 includes a host connected to one more
devices that can be accessed to perform computational tasks
via application programming interface (“API”) calls. A
device within hardware 2807 may include, but i1s not limited
to, a GPU, FPGA, Al engine, or other compute device (but
may also mclude a CPU) and its memory, as opposed to a
host within hardware 2807 that may include, but is not
limited to, a CPU (but may also include a compute device)
and 1ts memory, 1n at least one embodiment.

In at least one embodiment, software stack 2800 of a
programming platform includes, without limitation, a num-
ber of libraries 2803, a runtime 2805, and a device kernel
driver 2806. Fach of libraries 2803 may include data and
programming code that can be used by computer programs
and leveraged during soitware development, 1n at least one
embodiment. In at least one embodiment, libraries 2803 may
include, but are not limited to, pre-written code and sub-
routines, classes, values, type specifications, configuration
data, documentation, help data, and/or message templates. In
at least one embodiment, libraries 2803 include functions
that are optimized for execution on one or more types of
devices. In at least one embodiment, libraries 2803 may
include, but are not limited to, functions for performing
mathematical, deep learning, and/or other types of opera-
tions on devices. In at least one embodiment, libraries 2803
are associated with corresponding APIs 2802, which may
include one or more APIs, that expose functions imple-
mented 1n libraries 2803.

In at least one embodiment, application 2801 1s written as
source code that 1s compiled nto executable code, as dis-
cussed 1n greater detail below 1n conjunction with FIGS.
33-35. Executable code of application 2801 may run, at least
in part, on an execution environment provided by software
stack 2800, in at least one embodiment. In at least one
embodiment, during execution of application 2801, code
may be reached that needs to run on a device, as opposed to
a host. In such a case, runtime 2805 may be called to load
and launch requisite code on the device, in at least one
embodiment. In at least one embodiment, runtime 2805 may
include any technically feasible runtime system that 1s able
to support execution ol application S01.

In at least one embodiment, runtime 2805 1s implemented
as one or more runtime libraries associated with correspond-
ing APIs, which are shown as API(s) 2804. One or more of
such runtime libraries may include, without limitation, func-
tions for memory management, execution control, device
management, error handling, and/or synchronization, among,
other things, 1n at least one embodiment. In at least one
embodiment, memory management functions may include,
but are not limited to, functions to allocate, deallocate, and
copy device memory, as well as transier data between host
memory and device memory. In at least one embodiment,
execution control functions may include, but are not limited
to, Tunctions to launch a function (sometimes referred to as
a “kernel” when a function 1s a global function callable from
a host) on a device and set attribute values in a buller
maintained by a runtime library for a given function to be
executed on a device.

Runtime libraries and corresponding API(s) 2804 may be
implemented in any technically feasible manner, in at least
one embodiment. In at least one embodiment, one (or any
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number of) API may expose a low-level set of functions for
fine-grained control of a device, while another (or any
number of) APl may expose a higher-level set of such
functions. In at least one embodiment, a high-level runtime
API may be built on top of a low-level API. In at least one
embodiment, one or more of runtime APIs may be language-
specific APIs that are layered on top of a language-indepen-
dent runtime API.

In at least one embodiment, device kernel driver 2806 1s
configured to facilitate communication with an underlying
device. In at least one embodiment, device kernel driver
2806 may provide low-level functionalities upon which
APIs, such as API(s) 2804, and/or other software relies. In
at least one embodiment, device kernel driver 2806 may be
configured to compile intermediate representation (“IR”)
code mto binary code at runtime. For CUDA, device kernel
driver 2806 may compile Parallel Thread FExecution
(“PTX”) IR code that 1s not hardware specific into binary
code for a specific target device at runtime (with caching of
compiled binary code), which 1s also sometimes referred to
as “finalizing” code, 1n at least one embodiment. Doing so
may permit finalized code to run on a target device, which
may not have existed when source code was originally
compiled mmto PTX code, in at least one embodiment.
Alternatively, 1 at least one embodiment, device source
code may be compiled into binary code oflline, without
requiring device kernel driver 2806 to compile IR code at
runtime.

FIG. 29 illustrates a CUDA implementation of software
stack 2800 of FIG. 28, in accordance with at least one
embodiment. In at least one embodiment, a CUDA software

stack 2900, on which an application 2901 may be launched,
includes CUDA libraries 2903, a CUDA runtime 2905, a

CUDA driver 2907, and a device kernel driver 2908. In at
least one embodiment, CUDA software stack 2900 executes
on hardware 2909, which may include a GPU that supports
CUDA and 1s developed by NVIDIA Corporation of Santa
Clara, CA.

In at least one embodiment, application 2901, CUDA
runtime 2903, and device kernel dniver 2908 may perform
similar functionalities as application 2801, runtime 2805,
and device kernel driver 2806, respectively, which are
described above 1n conjunction with FIG. 28. In at least one
embodiment, CUDA driver 2907 includes a library (libcu-
da.so) that implements a CUDA driver API 2906. Similar to
a CUDA runtime API 2904 mmplemented by a CUDA
runtime library (cudart), CUDA dniver API 2906 may,
without limitation, expose functions for memory manage-
ment, execution control, device management, error han-
dling, synchronization, and/or graphics interoperability,

among other things, in at least one embodiment. In at least
one embodiment, CUDA driver API 2906 differs from

CUDA runtime API 2904 1n that CUDA runtime API 2904
simplifies device code management by providing implicit
initialization, context (analogous to a process) management,
and module (analogous to dynamically loaded libraries)
management. In contrast to high-level CUDA runtime API
2904, CUDA driver API 2906 1s a low-level API providing
more fine-grained control of the device, particularly with
respect to contexts and module loading, in at least one
embodiment. In at least one embodiment, CUDA driver API

2906 may expose functions for context management that are
not exposed by CUDA runtime API 2904. In at least one

embodiment, CUDA driver API 2906 1s also language-
independent and supports, e.g., OpenCL 1n addition to
CUDA runtime API 2904. Further, in at least one embodi-

ment, development libraries, including CUDA runtime
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2905, may be considered as separate from driver compo-
nents, including user-mode CUDA driver 2907 and kernel-
mode device driver 2908 (also sometimes referred to as a
“display” driver).

In at least one embodiment, CUDA libraries 2903 may 5
include, but are not limited to, mathematical libraries, deep
learning libraries, parallel algorithm libraries, and/or signal/
image/video processing libraries, which parallel computing
applications such as application 2901 may utilize. In at least
one embodiment, CUDA libraries 2903 may include math- 10
ematical libraries such as a cuBLAS library that 1s an
implementation of Basic Linear Algebra Subprograms
(“BLAS”) for performing linear algebra operations, a cuFFT
library for computing fast Fourier transforms (“FFTs), and
a CuURAND library for generating random numbers, among 15
others. In at least one embodiment, CUDA libraries 2903
may include deep learning libraries such as a cuDNN library
of primitives for deep neural networks and a TensorRT
plattorm for high-performance deep learning inference,
among others. 20

FIG. 30 illustrates a ROCm 1implementation of software
stack 2800 of FIG. 28, in accordance with at least one
embodiment. In at least one embodiment, a ROCm software
stack 3000, on which an application 3001 may be launched,
includes a language runtime 3003, a system runtime 30035, a 25
thunk 3007, and a ROCm kernel driver 3008. In at least one
embodiment, ROCm software stack 3000 executes on hard-
ware 3009, which may include a GPU that supports ROCm
and 1s developed by AMD Corporation of Santa Clara, CA.

In at least one embodiment, application 3001 may per- 30
form similar functionalities as application 2801 discussed
above 1n conjunction with FIG. 28. In addition, language
runtime 3003 and system runtime 3005 may perform similar
functionalities as runtime 2805 discussed above 1n conjunc-
tion with FIG. 28, 1n at least one embodiment. In at least one 35
embodiment, language runtime 3003 and system runtime
3005 differ 1n that system runtime 3005 1s a language-
independent runtime that implements a ROCr system run-
time API 3004 and makes use of a Heterogeneous System
Architecture (“HSA”) Runtime API. HSA runtime API 1s a 40
thin, user-mode API that exposes interfaces to access and
interact with an AMD GPU, including functions for memory
management, execution control via architected dispatch of
kernels, error handling, system and agent information, and
runtime 1nitialization and shutdown, among other things, in 45
at least one embodiment. In contrast to system runtime 3005,
language runtime 3003 1s an implementation of a language-
specific runtime API 3002 layered on top of ROCr system
runtime API 3004, 1n at least one embodiment. In at least one
embodiment, language runtime API may include, but 1s not 50
limited to, a Heterogeneous compute Interface for Portabil-
ity (“HIP”) language runtime API, a Heterogeneous Com-
pute Compiler (“HCC”) language runtime API, or an
OpenCL API, among others. HIP language i particular 1s an
extension of C++ programming language with functionally 55
similar versions of CUDA mechanisms, and, in at least one
embodiment, a HIP language runtime API includes functions
that are similar to those of CUDA runtime API 2904
discussed above in conjunction with FIG. 29, such as
functions for memory management, execution control, 60
device management, error handling, and synchronization,
among other things.

In at least one embodiment, thunk (ROCt) 3007 1s an
interface 3006 that can be used to interact with underlying
ROCm driver 3008. In at least one embodiment, ROCm 65
driver 3008 1s a ROCk driver, which 1s a combination of an

AMDGPU driver and a HSA kernel drniver (amdkid). In at
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least one embodiment, AMDGPU driver 1s a device kernel
driver for GPUs developed by AMD that performs similar
functionalities as device kernel driver 2806 discussed above
in conjunction with FIG. 28. In at least one embodiment,
HSA kernel driver 1s a driver permitting different types of
processors to share system resources more eflectively via
hardware features.

In at least one embodiment, various libraries (not shown)
may be included in ROCm software stack 3000 above
language runtime 3003 and provide functionality similarity
to CUDA libraries 2903, discussed above in conjunction
with FIG. 29. In at least one embodiment, various libraries
may include, but are not limited to, mathematical, deep
learning, and/or other libraries such as a hipBLAS library
that implements functions similar to those of CUDA
cuBLAS, a rocFFT library for computing FFTs that is
similar to CUDA cuFFT, among others.

FIG. 31 illustrates an OpenCL implementation of soft-
ware stack 2800 of FIG. 28, in accordance with at least one
embodiment. In at least one embodiment, an OpenCL soft-
ware stack 3100, on which an application 3101 may be
launched, includes an OpenCL framework 3110, an OpenCL
runtime 3106, and a driver 3107. In at least one embodiment,
OpenCL software stack 3100 executes on hardware 2909
that 1s not vendor-specific. As OpenCL 1s supported by
devices developed by different vendors, specific OpenCL
drivers may be required to interoperate with hardware from
such vendors, 1n at least one embodiment.

In at least one embodiment, application 3101, OpenCL
runtime 3106, device kernel driver 3107, and hardware 3108
may perform similar functionalities as application 2801,
runtime 2805, device kernel driver 2806, and hardware
2807, respectively, that are discussed above 1n conjunction
with FIG. 28. In at least one embodiment, application 3101
turther includes an OpenCL kernel 3102 with code that 1s to
be executed on a device.

In at least one embodiment, OpenCL defines a “platform”™
that allows a host to control devices connected to the host.
In at least one embodiment, an OpenCL framework provides
a platform layer API and a runtime API, shown as platform

API 3103 and runtime API 3105. In at least one embodi-

ment, runtime API 3105 uses contexts to manage execution
of kernels on devices. In at least one embodiment, each
identified device may be associated with a respective con-
text, which runtime API 3105 may use to manage command
queues, program objects, and kernel objects, share memory
objects, among other things, for that device. In at least one
embodiment, platform API 3103 exposes functions that
permit device contexts to be used to select and 1mtialize
devices, submit work to devices via command queues, and
enable data transfer to and from devices, among other
things. In addition, OpenCL framework provides various
built-in functions (not shown), including math functions,
relational functions, and 1image processing functions, among
others, 1n at least one embodiment.

In at least one embodiment, a compiler 3104 1s also
included 1 OpenCL frame-work 3110. Source code may be
compiled oflline prior to executing an application or online
during execution of an application, in at least one embodi-
ment. In contrast to CUDA and ROCm, OpenCL applica-
tions 1n at least one embodiment may be compiled online by
compiler 3104, which 1s included to be representative of any
number ol compilers that may be used to compile source
code and/or IR code, such as Standard Portable Intermediate
Representation (“SPIR-V”) code, into binary code. Alterna-
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tively, mn at least one embodiment, OpenCL applications
may be compiled oflline, prior to execution of such appli-
cations.

FIG. 32 illustrates software that 1s supported by a pro-
gramming platform, in accordance with at least one embodi-
ment. In at least one embodiment, a programming platform
3204 1s configured to support various programming models
3203, middlewares and/or libraries 3202, and frameworks
3201 that an application 3200 may rely upon. In at least one
embodiment, application 3200 may be an AI/ML application
implemented using, for example, a deep learning framework
such as MXNet, Py'Torch, or TensorFlow, which may rely on
libraries such as cuDNN, NVIDIA Collective Communica-
tions Library (*NCCL”), and/or NVIDA Developer Data
Loading Library (“DALI”) CUDA libraries to provide accel-
erated computing on underlying hardware.

In at least one embodiment, programming platform 3204
may be one of a CUDA, ROCm, or OpenCL platform
described above 1n conjunction with FIG. 29, FIG. 30, and
FIG. 31, respectively. In at least one embodiment, program-
ming platform 3204 supports multiple programming models
3203, which are abstractions of an underlying computing
system permitting expressions of algorithms and data struc-
tures. Programming models 3203 may expose features of
underlying hardware 1n order to improve performance, 1n at
least one embodiment. In at least one embodiment, program-

ming models 3203 may include, but are not limited to,
CUDA, HIP, OpenCL, C++ Accelerated Massive Parallel-

ism (“C++ AMP”), Open Multi-Processing (“OpenMP”),
Open Accelerators (“OpenACC”), and/or Vulcan Compute.

In at least one embodiment, libraries and/or middlewares
3202 provide implementations of abstractions of program-
ming models 3204. In at least one embodiment, such librar-
ies include data and programming code that may be used by
computer programs and leveraged during soitware develop-
ment. In at least one embodiment, such middlewares include
soltware that provides services to applications beyond those
available from programming platform 3204. In at least one

embodiment, libraries and/or middlewares 3202 may
include, but are not limited to, cuBLAS, cuFFT, cuRAND,

and other CUDA libraries, or rocBLAS, rocFFT, rocRAND,
and other ROCm libraries. In addition, in at least one
embodiment, libraries and/or middlewares 3202 may
include NCCL and ROCm Communication Collectives
Library (“RCCL”) libraries providing communication rou-
tines for GPUs, a MIOpen library for deep learming accel-
eration, and/or an Figen library for linear algebra, matrix
and vector operations, geometrical transformations, numeri-
cal solvers, and related algorithms.

In at least one embodiment, application frameworks 3201
depend on libraries and/or middlewares 3202. In at least one
embodiment, each of application frameworks 3201 i1s a
software framework used to implement a standard structure
of application software. Returning to the AI/ML example
discussed above, an AI/ML application may be implemented
using a framework such as Cafle, Cafle2, TensorFlow,
Keras, PyTorch, or MxNet deep learning frameworks, 1n at
least one embodiment.

FI1G. 33 illustrates compiling code to execute on one of
programming platforms of FIGS. 28-31, 1n accordance with
at least one embodiment. In at least one embodiment, a
compiler 3301 receives source code 3300 that includes both
host code as well as device code. In at least one embodiment,
complier 3301 1s configured to convert source code 3300
into host executable code 3302 for execution on a host and
device executable code 3303 for execution on a device. In at
least one embodiment, source code 3300 may either be
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compiled ofiline prior to execution of an application, or
online during execution of an application.

In at least one embodiment, source code 3300 may
include code in any programming language supported by
compiler 3301, such as C++, C, Fortran, etc. In at least one
embodiment, source code 3300 may be included 1n a single-
source file having a mixture of host code and device code,
with locations of device code being indicated therein. In at
least one embodiment, a single-source file may be a .cu file
that includes CUDA code or a .hip.cpp {ile that includes HIP
code. Alternatively, in at least one embodiment, source code
3300 may include multiple source code files, rather than a
single-source file, into which host code and device code are
separated.

In at least one embodiment, compiler 3301 1s configured
to compile source code 3300 into host executable code 3302
for execution on a host and device executable code 3303 for
execution on a device. In at least one embodiment, compiler
3301 performs operations including parsing source code
3300 into an abstract system tree (AST), performing opti-
mizations, and generating executable code. In at least one
embodiment 1n which source code 3300 includes a single-
source file, compiler 3301 may separate device code from
host code 1n such a single-source file, compile device code
and host code into device executable code 3303 and host
executable code 3302, respectively, and link device execut-
able code 3303 and host executable code 3302 together 1n a
single file, as discussed 1n greater detail below with respect
to FIG. 34.

In at least one embodiment, host executable code 3302
and device executable code 3303 may be 1n any suitable
format, such as binary code and/or IR code. In the case of
CUDA, host executable code 3302 may include native
object code and device executable code 3303 may include
code 1n PTX intermediate representation, in at least one
embodiment. In the case of ROCm, both host executable
code 3302 and device executable code 3303 may include
target binary code, 1n at least one embodiment.

FIG. 34 1s a more detailed illustration of compiling code
to execute on one of programming platforms of FIGS.
28-31, 1n accordance with at least one embodiment. In at
least one embodiment, a compiler 3401 1s configured to
receive source code 3400, compile source code 3400, and
output an executable file 3410. In at least one embodiment,
source code 3400 1s a single-source file, such as a .cu {ile, a
hip.cpp file, or a file 1n another format, that includes both
host and device code. In at least one embodiment, compiler
3401 may be, but 1s not limited to, an NVIDIA CUDA
compiler (“NVCC”) for compiling CUDA code 1n .cu files,
or a HCC compiler for compiling HIP code 1n .hip.cpp files.

In at least one embodiment, compiler 3401 includes a
compiler front end 3402, a host compiler 3405, a device
compiler 3406, and a linker 3409. In at least one embodi-
ment, compiler front end 3402 1s configured to separate
device code 3404 from host code 3403 1n source code 3400.
Device code 3404 1s compiled by device compiler 3406 into
device executable code 3408, which as described may
include binary code or IR code, 1n at least one embodiment.
Separately, host code 3403 1s compiled by host compiler
3405 1nto host executable code 3407, 1n at least one embodi-
ment. For NVCC, host compiler 3405 may be, but 1s not
limited to, a general purpose C/C++ compiler that outputs
native object code, while device compiler 3406 may be, but
1s not limited to, a Low Level Virtual Machine (“LLVM”)-
based compiler that forks a LLVM compiler infrastructure
and outputs P1X code or binary code, in at least one
embodiment. For HCC, both host compiler 34035 and device
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compiler 3406 may be, but are not limited to, LLVM-based
compilers that output target binary code, in at least one

embodiment.

Subsequent to compiling source code 3400 into host
executable code 3407 and device executable code 3408,
linker 3409 links host and device executable code 3407 and
3408 together in executable file 3410, in at least one
embodiment. In at least one embodiment, native object code
for a host and PTX or binary code for a device may be linked
together 1n an Executable and Linkable Format (“ELF”) file,
which 1s a container format used to store object code.

FIG. 35 illustrates translating source code prior to com-
piling source code, 1n accordance with at least one embodi-
ment. In at least one embodiment, source code 3500 1s
passed through a translation tool 3501, which translates
source code 3500 into translated source code 3502. In at
least one embodiment, a compiler 3503 1s used to compile
translated source code 3502 1nto host executable code 3504
and device executable code 35035 1n a process that 1s similar
to compilation of source code 3300 by compiler 3301 into
host executable code 3302 and device executable 3303, as
discussed above 1n conjunction with FIG. 33.

In at least one embodiment, a translation performed by
translation tool 3501 1s used to port source 3500 for execu-
tion 1n a different environment than that 1n which i1t was
originally intended to run. In at least one embodiment,
translation tool 3501 may include, but 1s not limited to, a
HIP translator that 1s used to “hipity” CUDA code intended
tor a CUDA platform into HIP code that can be compiled
and executed on a ROCm platform. In at least one embodi-
ment, translation of source code 3500 may include parsing,
source code 3500 and converting calls to API(s) provided by
one programming model (e.g., CUDA) mto corresponding
calls to API(s) provided by another programming model
(e.g., HIP), as discussed in greater detail below in conjunc-
tion with FIGS. 36A-37. Returning to the example of
hipitying CUDA code, calls to CUDA runtime API, CUDA
driver API, and/or CUDA libraries may be converted to
corresponding HIP API calls, 1n at least one embodiment. In
at least one embodiment, automated translations performed
by translation tool 3501 may sometimes be incomplete,

requiring additional, manual effort to fully port source code
3500.

Configuring GPUs for General-Purpose Computing

The following FIGS. set forth, without limitation, exem-
plary architectures for compiling and executing compute
source code, 1n accordance with at least one embodiment.

FIG. 36A 1llustrates a system 36A00 configured to com-
pile and execute CUDA source code 3610 using diflerent
types of processing units, 1n accordance with at least one
embodiment. In at least one embodiment, system 36A00
includes, without limitation, CUDA source code 3610, a
CUDA compiler 3650, host executable code 3670(1), host
executable code 3670(2), CUDA device executable code
3684, a CPU 3690, a CUDA-enabled GPU 3694, a GPU
3692, a CUDA to HIP translation tool 3620, HIP source code
3630, a HIP compiler driver 3640, an HCC 3660, and HCC
device executable code 3682.

In at least one embodiment, CUDA source code 3610 is
a collection of human-readable code 1n a CUDA program-
ming language. In at least one embodiment, CUDA code 1s
human-readable code 1n a CUDA programming language. In
at least one embodiment, a CUDA programming language 1s
an extension of the C++ programming language that
includes, without limitation, mechanisms to define device

10

15

20

25

30

35

40

45

50

55

60

65

58

code and distinguish between device code and host code. In
at least one embodiment, device code 1s source code that,
alter compilation, 1s executable in parallel on a device. In at
least one embodiment, a device may be a processor that 1s
optimized for parallel instruction processing, such as
CUDA-enabled GPU 3690, GPU 36192, or another
GPGPU, etc. In at least one embodiment, host code 1s source
code that, after compilation, 1s executable on a host. In at
least one embodiment, a host 1s a processor that 1s optimized
for sequential instruction processing, such as CPU 3690.

In at least one embodiment, CUDA source code 3610
includes, without limitation, any number (including zero) of
global functions 3612, any number (including zero) of
device functions 3614, any number (including zero) of host
functions 3616, and any number (including zero) of host/
device functions 3618. In at least one embodiment, global
functions 3612, device functions 3614, host functions 3616,
and host/device functions 3618 may be mixed in CUDA
source code 3610. In at least one embodiment, each of global
functions 3612 1s executable on a device and callable from
a host. In at least one embodiment, one or more of global
functions 3612 may therefore act as entry points to a device.
In at least one embodiment, each of global functions 3612 1s
a kernel. In at least one embodiment and 1n a technique
known as dynamic parallelism, one or more of global
functions 3612 defines a kernel that 1s executable on a device
and callable from such a device. In at least one embodiment,
a kernel 1s executed N (where N 1s any positive integer)
times 1n parallel by N different threads on a device during
execution.

In at least one embodiment, each of device functions 3614
1s executed on a device and callable from such a device only.
In at least one embodiment, each of host functions 3616 1s
executed on a host and callable from such a host only. In at
least one embodiment, each of host/device functions 3616
defines both a host version of a function that 1s executable
on a host and callable from such a host only and a device
version of the function that 1s executable on a device and
callable from such a device only.

In at least one embodiment, CUDA source code 3610 may
also 1include, without limitation, any number of calls to any
number of functions that are defined via a CUDA runtime
API 3602. In at least one embodiment, CUDA runtime API
3602 may include, without limitation, any number of func-
tions that execute on a host to allocate and deallocate device
memory, transfer data between host memory and device
memory, manage systems with multiple devices, etc. In at
least one embodiment, CUDA source code 3610 may also
include any number of calls to any number of functions that
are specified 1n any number of other CUDA APIs. In at least
one embodiment, a CUDA API may be any API that is
designed for use by CUDA code. In at least one embodi-
ment, CUDA APIs include, without limitation, CUDA run-
time API 3602, a CUDA dniver API, APIs for any number of
CUDA libraries, etc. In at least one embodiment and relative
to CUDA runtime API 3602, a CUDA driver API 1s a
lower-level API but provides finer-grained control of a
device. In at least one embodiment, examples of CUDA
libraries 1nclude, without limitation, cuBLAS, cuFFT,
CuRAND, cuDNN, eftc.

In at least one embodiment, CUDA compiler 3650 com-
piles mput CUDA code (e.g., CUDA source code 3610) to
generate host executable code 3670(1) and CUDA device
executable code 3684. In at least one embodiment, CUDA
compiler 3650 1s NVCC. In at least one embodiment, host
executable code 3670(1) 1s a compiled version of host code
included in mput source code that 1s executable on CPU
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3690. In at least one embodiment, CPU 3690 may be any
processor that 1s optimized for sequential mstruction pro-
cessing.

In at least one embodiment, CUDA device executable
code 3684 1s a compiled version of device code included 1n
input source code that 1s executable on CUDA-enabled GPU
3694. In at least one embodiment, CUDA device executable
code 3684 includes, without limitation, binary code. In at
least one embodiment, CUDA device executable code 3684
includes, without limitation, IR code, such as PTX code, that
1s Turther compiled at runtime 1nto binary code for a specific
target device (e.g., CUDA-enabled GPU 3694) by a device
driver. In at least one embodiment, CUDA-enabled GPU
3694 may be any processor that 1s optimized for parallel

instruction processing and that supports CUDA. In at least
one embodiment, CUDA-enabled GPU 3694 1s developed

by NVIDIA Corporation of Santa Clara, CA.

In at least one embodiment, CUDA to HIP translation tool
3620 1s configured to translate CUDA source code 3610 to
tunctionally similar HIP source code 3630. In a least one
embodiment, HIP source code 3630 1s a collection of
human-readable code 1n a HIP programming language. In at
least one embodiment, HIP code 1s human-readable code 1in
a HIP programming language. In at least one embodiment,
a HIP programming language 1s an extension of the C++
programming language that includes, without limitation,
functionally similar versions of CUDA mechamisms to
define device code and distinguish between device code and
host code. In at least one embodiment, a HIP programming
language may include a subset of functionality of a CUDA
programming language. In at least one embodiment, for
example, a HIP programming language includes, without
limitation, mechamsm(s) to define global functions 3612,
but such a HIP programming language may lack support for
dynamic parallelism and therefore global functions 3612
defined in HIP code may be callable from a host only.

In at least one embodiment, HIP source code 3630
includes, without limitation, any number (including zero) of
global functions 3612, any number (including zero) of
device functions 3614, any number (including zero) of host
functions 3616, and any number (including zero) of host/
device functions 3618. In at least one embodiment, HIP
source code 3630 may also include any number of calls to
any number of functions that are specified 1n a HIP runtime
API 3632. In at least one embodiment, HIP runtime API
3632 includes, without limitation, functionally similar ver-
sions of a subset of functions included in CUDA runtime
API 3602. In at least one embodiment, HIP source code
3630 may also include any number of calls to any number
ol functions that are specified 1mn any number of other HIP
APIs. In at least one embodiment, a HIP API may be any API
that 1s designed for use by HIP code and/or ROCm. In at
least one embodiment, HIP APIs include, without limitation,
HIP runtime API 3632, a HIP drniver API, APIs for any
number of HIP libraries, APIs for any number of ROCm
libraries, etc.

In at least one embodiment, CUDA to HIP translation tool
3620 converts each kernel call in CUDA code from a CUDA
syntax to a HIP syntax and converts any number of other
CUDA calls in CUDA code to any number of other func-
tionally similar HIP calls. In at least one embodiment, a
CUDA call 1s a call to a function specified n a CUDA API,
and a HIP call 1s a call to a function specified in a HIP API.
In at least one embodiment, CUDA to HIP translation tool
3620 converts any number of calls to functions specified 1n
CUDA runtime API 3602 to any number of calls to functions
specified in HIP runtime API 3632.
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In at least one embodiment, CUDA to HIP translation tool
3620 1s a tool known as hipity-perl that executes a text-based
translation process. In at least one embodiment, CUDA to
HIP translation tool 3620 1s a tool known as hipify-clang
that, relative to hipity-perl, executes a more complex and
more robust translation process that involves parsing CUDA
code using clang (a compiler front-end) and then translating
resulting symbols. In at least one embodiment, properly
converting CUDA code to HIP code may require modifica-

tions (e.g., manual edits) 1n addition to those performed by
CUDA to HIP translation tool 3620.

In at least one embodiment, HIP compiler driver 3640 1s
a front end that determines a target device 3646 and then
configures a compiler that 1s compatible with target device
3646 to compile HIP source code 3630. In at least one
embodiment, target device 3646 i1s a processor that 1is
optimized for parallel instruction processing. In at least one
embodiment, HIP compiler dniver 3640 may determine
target device 3646 1n any technically feasible fashion.

In at least one embodiment, if target device 3646 1s
compatible with CUDA (e.g., CUDA-enabled GPU 3694),
then HIP compiler driver 3640 generates a HIP/NVCC
compilation command 3642. In at least one embodiment and
as described in greater detail 1n conjunction with FIG. 36B,
HIP/NVCC compilation command 3642 configures CUDA
compiler 3650 to compile HIP source code 3630 using,
without limitation, a HIP to CUDA translation header and a
CUDA runtime library. In at least one embodiment and 1n
response to HIP/NVCC compilation command 3642, CUDA
compiler 3650 generates host executable code 3670(1) and
CUDA device executable code 3684.

In at least one embodiment, 1f target device 3646 1s not
compatible with CUDA, then HIP compiler driver 3640
generates a HIP/HCC compilation command 3644. In at
least one embodiment and as described in greater detail 1n
conjunction with FIG. 36C, HIP/HCC compilation com-
mand 3644 configures HCC 3660 to compile HIP source
code 3630 using, without limitation, an HCC header and a
HIP/HCC runtime library. In at least one embodiment and 1n
response to HIP/HCC compilation command 3644, HCC
3660 generates host executable code 3670(2) and HCC
device executable code 3682. In at least one embodiment,
HCC device executable code 3682 1s a compiled version of
device code included m HIP source code 3630 that is
executable on GPU 3692. In at least one embodiment, GPU
3692 may be any processor that 1s optimized for parallel
instruction processing, 1s not compatible with CUDA, and 1s
compatible with HCC. In at least one embodiment, GPU
3692 1s developed by AMD Corporation of Santa Clara, CA
In at least one embodiment GPU, 3692 1s a non-CUDA-
enabled GPU 3692.

For explanatory purposes only, three different tlows that
may be implemented 1n at least one embodiment to compile
CUDA source code 3610 for execution on CPU 3690 and
different devices are depicted in FIG. 36A. In at least one
embodiment, a direct CUDA flow compiles CUDA source
code 3610 for execution on CPU 3690 and CUDA-enabled
GPU 3694 without translating CUDA source code 3610 to

HIP source code 3630. In at least one embodiment, an
indirect CUDA flow translates CUDA source code 3610 to

HIP source code 3630 and then compiles HIP source code
3630 for execution on CPU 3690 and CUDA-enabled GPU
3694. In at least one embodiment, a CUDA/HCC flow
translates CUDA source code 3610 to HIP source code 3630
and then compiles HIP source code 3630 for execution on
CPU 3690 and GPU 3692.
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A direct CUDA flow that may be implemented 1n at least
one embodiment 1s depicted via dashed lines and a series of
bubbles annotated A1-A3. In at least one embodiment and as
depicted with bubble annotated A1, CUDA compiler 3650
receives CUDA source code 3610 and a CUDA compile
command 3648 that configures CUDA compiler 3650 to
compile CUDA source code 3610. In at least one embodi-
ment, CUDA source code 3610 used 1n a direct CUDA flow

1s written 1n a CUDA programming language that 1s based on
a programming language other than C++ (e.g., C, Fortran,
Python, Java, etc.). In at least one embodiment and 1n
response to CUDA compile command 3648, CUDA com-
piler 3650 generates host executable code 3670(1) and
CUDA device executable code 3684 (depicted with bubble
annotated A2). In at least one embodiment and as depicted
with bubble annotated A3, host executable code 3670(1) and
CUDA device executable code 3684 may be executed on,

respectively, CPU 3690 and CUDA-enabled GPU 3694. In

at least one embodiment, CUDA device executable code
3684 includes, without limitation, binary code. In at least
one embodiment, CUDA device executable code 3684
includes, without limitation, PTX code and i1s further com-
piled ito binary code for a specific target device at runtime.

An mdirect CUDA flow that may be implemented in at
least one embodiment 1s depicted via dotted lines and a
series of bubbles annotated B1-B6. In at least one embodi-
ment and as depicted with bubble annotated B1, CUDA to
HIP translation tool 3620 receives CUDA source code 3610.
In at least one embodiment and as depicted with bubble
annotated B2, CUDA to HIP translation tool 3620 translates
CUDA source code 3610 to HIP source code 3630. In at least
one embodiment and as depicted with bubble annotated B3,
HIP compiler driver 3640 receives HIP source code 3630
and determines that target device 3646 1s CUDA-enabled.

In at least one embodiment and as depicted with bubble
annotated B4, HIP compiler driver 3640 generates HIP/
NVCC compilation command 3642 and transmits both HIP/
NVCC compilation command 3642 and HIP source code
3630 to CUDA compiler 3650. In at least one embodiment
and as described 1n greater detail in conjunction with FIG.
36B, HIP/NVCC compilation command 3642 configures
CUDA compiler 3650 to compile HIP source code 3630
using, without limitation, a HIP to CUDA translation header
and a CUDA runtime library. In at least one embodiment and
in response to HIP/NVCC compilation command 3642,
CUDA compiler 3650 generates host executable code 3670
(1) and CUDA device executable code 3684 (depicted with
bubble annotated B5). In at least one embodiment and as
depicted with bubble annotated B6, host executable code
3670(1) and CUDA device executable code 3684 may be
executed on, respectively, CPU 3690 and CUDA-enabled
GPU 3694. In at least one embodiment, CUDA device
executable code 3684 includes, without limitation, binary
code. In at least one embodiment, CUDA device executable
code 3684 includes, without limitation, PTX code and 1s
turther compiled 1nto binary code for a specific target device
at runtime.

A CUDA/HCC flow that may be implemented in at least
one embodiment 1s depicted via solid lines and a series of
bubbles annotated C1-C6. In at least one embodiment and as
depicted with bubble annotated C1, CUDA to HIP transla-
tion tool 3620 receives CUDA source code 3610. In at least
one embodiment and as depicted with bubble annotated C2,
CUDA to HIP translation tool 3620 translates CUDA source
code 3610 to HIP source code 3630. In at least one embodi-
ment and as depicted with bubble annotated C3, HIP com-
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piler driver 3640 receives HIP source code 3630 and deter-
mines that target device 3646 1s not CUDA-enabled.
In at least one embodiment, HIP compiler driver 3640

generates HIP/HCC compilation command 3644 and trans-
mits both HIP/HCC compilation command 3644 and HIP

source code 3630 to HCC 3660 (depicted with bubble
annotated C4). In at least one embodiment and as described
in greater detail in conjunction with FIG. 36C, HIP/HCC
compilation command 3644 configures HCC 3660 to com-
pile HIP source code 3630 using, without limitation, an HCC
header and a HIP/HCC runtime library. In at least one
embodiment and 1n response to HIP/HCC compilation com-
mand 3644, HCC 3660 generates host executable code
3670(2) and HCC device executable code 3682 (depicted
with bubble annotated C5). In at least one embodiment and
as depicted with bubble annotated C6, host executable code

3670(2) and HCC device executable code 3682 may be
executed on, respectively, CPU 3690 and GPU 3692.

In at least one embodiment, after CUDA source code 3610
1s translated to HIP source code 3630, HIP compiler driver
3640 may subsequently be used to generate executable code
for either CUDA-enabled GPU 3694 or GPU 3692 without
re-executing CUDA to HIP translation tool 3620. In at least
one embodiment, CUDA to HIP translation tool 3620 trans-
lates CUDA source code 3610 to HIP source code 3630 that
1s then stored 1n memory. In at least one embodiment, HIP
compiler driver 3640 then configures HCC 3660 to generate
host executable code 3670(2) and HCC device executable
code 3682 based on HIP source code 3630. In at least one
embodiment, HIP compiler driver 3640 subsequently con-
figures CUDA compiler 3650 to generate host executable
code 3670(1) and CUDA device executable code 3684 based
on stored HIP source code 3630.

FIG. 36B 1llustrates a system 3604 configured to compile
and execute CUDA source code 3610 of FIG. 36A using
CPU 3690 and CUDA-enabled GPU 3694, 1n accordance
with at least one embodiment. In at least one embodiment,
system 3604 includes, without limitation, CUDA source
code 3610, CUDA to HIP translation tool 3620, HIP source
code 3630, HIP compiler dniver 3640, CUDA compiler
3650, host executable code 3670(1), CUDA device execut-
able code 3684, CPU 3690, and CUDA-enabled GPU 3694.

In at least one embodiment and as described previously
herein 1n conjunction with FIG. 36 A, CUDA source code
3610 includes, without limitation, any number (including
zero) of global functions 3612, any number (including zero)
of device functions 3614, any number (including zero) of
host functions 3616, and any number (including zero) of
host/device functions 3618. In at least one embodiment,
CUDA source code 3610 also includes, without limitation,
any number of calls to any number of functions that are
specified 1n any number of CUDA APIs.

In at least one embodiment, CUDA to HIP translation tool
3620 translates CUDA source code 3610 to HIP source code
3630. In at least one embodiment, CUDA to HIP translation
tool 3620 converts each kernel call in CUDA source code
3610 from a CUDA syntax to a HIP syntax and converts any
number of other CUDA calls in CUDA source code 3610 to
any number of other functionally similar HIP calls.

In at least one embodiment, HIP compiler driver 3640
determines that target device 3646 1s CUDA-enabled and
generates HIP/NVCC compilation command 3642. In at
least one embodiment, HIP compiler driver 3640 then con-
figures CUDA compiler 3650 via HIP/NVCC compilation
command 3642 to compile HIP source code 3630. In at least
one embodiment, HIP compiler driver 3640 provides access

to a HIP to CUDA translation header 36352 as part of




US 12,299,801 B2

63

configuring CUDA compiler 3650. In at least one embodi-
ment, HIP to CUDA translation header 3652 translates any
number ol mechanisms (e.g., functions) specified in any
number of HIP APIs to any number of mechanisms specified
in any number of CUDA APIs. In at least one embodiment,
CUDA compiler 3650 uses HIP to CUDA translation header
3652 1n conjunction with a CUDA runtime library 3654
corresponding to CUDA runtime API 3602 to generate host
executable code 3670(1) and CUDA device executable code
3684. In at least one embodiment, host executable code
3670(1) and CUDA device executable code 3684 may then
be executed on, respectively, CPU 3690 and CUDA-enabled
GPU 3694. In at least one embodiment, CUDA device
executable code 3684 includes, without limitation, binary
code. In at least one embodiment, CUDA device executable
code 3684 includes, without limitation, PTX code and 1s
turther compiled into binary code for a specific target device
at runtime.

FI1G. 36C illustrates a system 3606 configured to compile

and execute CUDA source code 3610 of FIG. 36A using
CPU 3690 and non-CUDA-enabled GPU 3692, in accor-

dance with at least one embodiment. In at least one embodi-
ment, system 3606 includes, without limitation, CUDA

source code 3610, CUDA to HIP translation tool 3620, HIP
source code 3630, HIP compiler driver 3640, HCC 3660,
host executable code 3670(2), HCC device executable code
3682, CPU 3690, and GPU 3692.

In at least one embodiment and as described previously
herein 1n conjunction with FIG. 36 A, CUDA source code
3610 includes, without limitation, any number (including
zero) of global functions 3612, any number (including zero)
of device functions 3614, any number (including zero) of
host functions 3616, and any number (including zero) of
host/device functions 3618. In at least one embodiment,
CUDA source code 3610 also includes, without limitation,
any number of calls to any number of functions that are
specified 1 any number of CUDA APIs.

In at least one embodiment, CUDA to HIP translation tool
3620 translates CUDA source code 3610 to HIP source code
3630. In at least one embodiment, CUDA to HIP translation
tool 3620 converts each kernel call in CUDA source code
3610 from a CUDA syntax to a HIP syntax and converts any
number of other CUDA calls 1n source code 3610 to any
number of other functionally similar HIP calls.

In at least one embodiment, HIP compiler driver 3640
subsequently determines that target device 3646 1s not
CUDA-enabled and generates HIP/HCC compilation com-
mand 3644 . In at least one embodiment, HIP compiler driver
3640 then configures HCC 3660 to execute HIP/HCC com-
pilation command 3644 to compile HIP source code 3630. In
at least one embodiment, HIP/HCC compilation command
3644 configures HCC 3660 to use, without limitation, a
HIP/HCC runtime library 3658 and an HCC header 3656 to
generate host executable code 3670(2) and HCC device
executable code 3682. In at least one embodiment, HIP/
HCC runtime library 3658 corresponds to HIP runtime API
3632. In at least one embodiment, HCC header 3656
includes, without limitation, any number and type of
interoperability mechanisms for HIP and HCC. In at least
one embodiment, host executable code 3670(2) and HCC
device executable code 3682 may be executed on, respec-
tively, CPU 3690 and GPU 3692.

FIG. 37 illustrates an exemplary kernel translated by
CUDA-to-HIP translation tool 3620 of FIG. 36C, 1n accor-
dance with at least one embodiment. In at least one embodi-
ment, CUDA source code 3610 partitions an overall problem
that a given kernel 1s designed to solve into relatively coarse

10

15

20

25

30

35

40

45

50

55

60

65

64

sub-problems that can independently be solved using thread
blocks. In at least one embodiment, each thread block
includes, without limitation, any number of threads. In at
least one embodiment, each sub-problem 1s partitioned nto
relatively fine pieces that can be solved cooperatively in
parallel by threads within a thread block. In at least one
embodiment, threads within a thread block can cooperate by
sharing data through shared memory and by synchronizing
execution to coordinate memory accesses.

In at least one embodiment, CUDA source code 3610
organizes thread blocks associated with a given kernel into
a one-dimensional, a two-dimensional, or a three-dimen-
sional grid of thread blocks. In at least one embodiment,
cach thread block includes, without limitation, any number
of threads, and a gnd includes, without limitation, any
number of thread blocks.

In at least one embodiment, a kernel 1s a function i1n
device code that 1s defined using a *“_global_” declaration
specifier. In at least one embodiment, the dimension of a grid
that executes a kernel for a given kernel call and associated
streams are specified using a CUDA kernel launch syntax
3710. In at least one embodiment, CUDA kernel launch
syntax 3710 1s specified as “KernelName<<<GridSize,
BlockSize, SharedMemorySize, Stream>>>(Kernel Argu-
ments);”. In at least one embodiment, an execution configu-
ration syntax 1s a “<<<, . . >>>" construct that 1s mserted
between a kernel name (“KermnelName™) and a parenthesized
list of kernel arguments (“KernelArguments™). In at least
one embodiment, CUDA kemel launch syntax 3710
includes, without limitation, a CUDA launch function syn-
tax 1nstead of an execution configuration syntax.

In at least one embodiment, “GridSize™ 1s of a type dim3
and specifies the dimension and size of a grnid. In at least one
embodiment, type dim3 1s a CUDA-defined structure that
includes, without limitation, unsigned 1ntegers X, y, and z. In
at least one embodiment, 11 z 1s not specified, then z defaults
to one. In at least one embodiment, 11 y 1s not specified, then
y defaults to one. In at least one embodiment, the number of
thread blocks 1n a grid 1s equal to the product of GridSize.x,
GridSize.y, and GridSize.z. In at least one embodiment,
“BlockSize™ 1s of type dim3 and specifies the dimension and
size ol each thread block. In at least one embodiment, the
number of threads per thread block 1s equal to the product of
BlockSize x, BlockSize.y, and BlockSize.z. In at least one
embodiment, each thread that executes a kernel 1s given a
unmque thread ID that 1s accessible within the kernel through
a built-in vaniable (e.g., “threadldx”).

In at least one embodiment and with respect to CUDA
kernel launch syntax 3710, “SharedMemorySize” 1s an
optional argument that specifies a number of bytes in a
shared memory that 1s dynamaically allocated per thread
block for a given kernel call in addition to statically allo-
cated memory. In at least one embodiment and with respect
to CUDA kernel launch syntax 3710, SharedMemorySize
defaults to zero. In at least one embodiment and with respect
to CUDA kernel launch syntax 3710, “Stream’ 1s an optional
argument that specifies an associated stream and defaults to
zero to specily a default stream. In at least one embodiment,
a stream 1s a sequence of commands (possibly 1ssued by
different host threads) that execute 1n order. In at least one
embodiment, different streams may execute commands out
ol order with respect to one another or concurrently.

In at least one embodiment, CUDA source code 3610
includes, without limitation, a kernel definition for an exem-
plary kernel “MatAdd” and a main function. In at least one
embodiment, main function 1s host code that executes on a
host and includes, without limitation, a kernel call that
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causes kernel MatAdd to execute on a device. In at least one
embodiment and as shown, kernel MatAdd adds two matri-
ces A and B of size NxN, where N 1s a positive integer, and
stores the result 1n a matrix C. In at least one embodiment,
main function defines a threadsPerBlock variable as 16 by
16 and a numBlocks variable as N/16 by N/16. In at least one
embodiment, main function then specifies kernel call
“MatAdd<<<<numBlocks, threadsPerBlock>>>(A, B, C);”.
In at least one embodiment and as per CUDA kernel launch
syntax 3710, kernel MatAdd 1s executed using a grid of
thread blocks having a dimension N/16 by N/16, where each
thread block has a dimension of 16 by 16. In at least one
embodiment, each thread block includes 256 threads, a grid
1s created with enough blocks to have one thread per matrix
clement, and each thread i such a grid executes kernel
MatAdd to perform one pair-wise addition.

In at least one embodiment, while translating CUDA
source code 3610 to HIP source code 3630, CUDA to HIP
translation tool 3620 translates each kernel call in CUDA
source code 3610 from CUDA kernel launch syntax 3710 to
a HIP kernel launch syntax 3720 and converts any number
of other CUDA calls 1n source code 3610 to any number of
other functionally similar HIP calls. In at least one embodi-
ment, HIP kernel launch syntax 3720 1s specified as “hip-
LaunchKemelGGL(KernelName, GridSize, BlockSize,
SharedMemorySize, Stream, KernelArguments);”. In at
least one embodiment, each of KernelName, GridSize,
BlockSize, ShareMemorySize, Stream, and Kernel Argu-
ments has the same meaning 1n HIP kernel launch syntax
3720 as in CUDA kernel launch syntax 3710 (described
previously herein). In at least one embodiment, arguments
SharedMemorySize and Stream are required in HIP kernel
launch syntax 3720 and are optional in CUDA kernel launch
syntax 3710.

In at least one embodiment, a portion of HIP source code
3630 depicted 1 FIG. 37 1s 1identical to a portion of CUDA
source code 3610 depicted 1n FIG. 37 except for a kernel call
that causes kernel MatAdd to execute on a device. In at least
one embodiment, kernel MatAdd 1s defined in HIP source
code 3630 with the same “_global_" declaration specifier
with which kernel MatAdd 1s defined 1n CUDA source code
3610. In at least one embodiment, a kernel call in HIP source
code 3630 1s “hipLaunchKernelGGL(MatAdd, numBlocks,
threadsPerBlock, 0, 0, A, B, C);”, while a corresponding

kernel <call 1n CUDA source code 3610 1is
“MatAdd<<<<<npumBlocks, threadsPerBlock>>>(A, B,
C),”.

FI1G. 38 illustrates non-CUDA-enabled GPU 3692 of FIG.
36C in greater detail, in accordance with at least one
embodiment. In at least one embodiment, GPU 3692 is
developed by AMD corporation of Santa Clara. In at least
one embodiment, GPU 3692 can be configured to perform
compute operations 1n a highly-parallel fashion. In at least
one embodiment, GPU 3692 1s configured to execute graph-
ics pipeline operations such as draw commands, pixel opera-
tions, geometric computations, and other operations associ-
ated with rendering an 1mage to a display. In at least one
embodiment, GPU 3692 1s configured to execute operations
unrelated to graphics. In at least one embodiment, GPU
3692 i1s configured to execute both operations related to
graphics and operations unrelated to graphics. In at least one

embodiment, GPU 3692 can be configured to execute device
code included 1n HIP source code 3630.

In at least one embodiment, GPU 3692 includes, without

limitation, any number of programmable processing units
3820, a command processor 3810, an L2 cache 3822,
memory controllers 3870, DMA engines 3880(1), system
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memory controllers 3882, DMA engines 3880(2), and GPU
controllers 3884. In at least one embodiment, each program-
mable processing unit 3820 includes, without limitation, a
workload manager 3830 and any number of compute units
3840. In at least one embodiment, command processor 3810
reads commands from one or more command queues (not
shown) and distributes commands to workload managers
3830. In at least one embodiment, for each programmable
processing unit 3820, associated workload manager 3830
distributes work to compute units 3840 included 1n program-
mable processing unit 3820. In at least one embodiment,
cach compute unit 3840 may execute any number of thread
blocks, but each thread block executes on a single compute
umt 3840. In at least one embodiment, a workgroup 1s a
thread block.

In at least one embodiment, each compute unit 3840
includes, without limitation, any number of SIMD units
3850 and a shared memory 3860. In at least one embodi-
ment, each SIMD umt 3850 implements a SIMD architec-
ture and 1s configured to perform operations 1n parallel. In at
least one embodiment, each SIMD unit 3850 includes,
without limitation, a vector ALU 3832 and a vector register
file 3854. In at least one embodiment, each SIMD unit 3850
executes a different warp. In at least one embodiment, a
warp 1s a group of threads (e.g., 16 threads), where each
thread in the warp belongs to a single thread block and 1s
configured to process a different set of data based on a single
set of structions. In at least one embodiment, predication
can be used to disable one or more threads 1n a warp. In at
least one embodiment, a lane 1s a thread. In at least one
embodiment, a work item 1s a thread. In at least one
embodiment, a wavelront 1s a warp. In at least one embodi-
ment, diflerent wavelronts in a thread block may synchro-
nize together and communicate via shared memory 3860.

In at least one embodiment, programmable processing
units 3820 are referred to as “shader engines.” In at least one
embodiment, each programmable processing unit 3820
includes, without limitation, any amount of dedicated graph-
ics hardware 1n addition to compute units 3840. In at least
one embodiment, each programmable processing unit 3820
includes, without limitation, any number (including zero) of
geometry processors, any number (including zero) of ras-
terizers, any number (including zero) of render back ends,
workload manager 3830, and any number of compute units
3840.

In at least one embodiment, compute units 3840 share 1.2
cache 3822. In at least one embodiment, .2 cache 3822 1s
partitioned. In at least one embodiment, a GPU memory
3890 1s accessible by all compute units 3840 1n GPU 3692.
In at least one embodiment, memory controllers 3870 and
system memory controllers 3882 facilitate data transfers
between GPU 3692 and a host, and DMA engines 3880(1)
enable asynchronous memory transiers between GPU 3692
and such a host. In at least one embodiment, memory
controllers 3870 and GPU controllers 3884 facilitate data
transiers between GPU 3692 and other GPUs 3692, and
DMA engines 3880(2) enable asynchronous memory trans-
ters between GPU 3692 and other GPUs 3692.

In at least one embodiment, GPU 3692 includes, without
limitation, any amount and type of system interconnect that
tacilitates data and control transmissions across any number
and type of directly or indirectly linked components that
may be internal or external to GPU 3692. In at least one
embodiment, GPU 3692 includes, without limitation, any
number and type of I/O interfaces (e.g., PCle) that are
coupled to any number and type of peripheral devices. In at
least one embodiment, GPU 3692 may include, without
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limitation, any number (including zero) of display engines
and any number (including zero) of multimedia engines. In
at least one embodiment, GPU 3692 implements a memory
subsystem that includes, without limitation, any amount and
type of memory controllers (e.g., memory controllers 3870
and system memory controllers 3882) and memory devices
(e.g., shared memories 3860) that may be dedicated to one
component or shared among multiple components. In at
least one embodiment, GPU 3692 mmplements a cache
subsystem that includes, without limitation, one or more
cache memories (e.g., L2 cache 3822) that may each be
private to or shared between any number of components
(e.g., SIMD units 3850, compute units 3840, and program-
mable processing units 3820).

FIG. 39 illustrates how threads of an exemplary CUDA
orid 3920 are mapped to diflerent compute units 3840 of
FIG. 38, in accordance with at least one embodiment. In at

least one embodiment and for explanatory purposes only,
orid 3920 has a GridSize of BX by BY by 1 and a BlockSize

of TX by TY by 1. In at least one embodiment, grid 3920
therefore includes, without limitation, (BX*BY) thread
blocks 3930 and each thread block 3930 includes, without
limitation, (IX*TY) threads 3940. Threads 3940 are
depicted 1n FIG. 39 as squiggly arrows.

In at least one embodiment, grid 3920 1s mapped to
programmable processing unit 3820(1) that includes, with-
out limitation, compute units 3840(1)-3840(C). In at least
one embodiment and as shown, (BJ*BY ) thread blocks 3930
are mapped to compute unit 3840(1), and the remaining
thread blocks 3930 are mapped to compute unit 3840(2). In
at least one embodiment, each thread block 3930 may
include, without limitation, any number of warps, and each
warp 1s mapped to a different SIMD unit 3850 of FIG. 38.

In at least one embodiment, warps in a given thread block
3930 may synchronize together and communicate through
shared memory 3860 included 1n associated compute unit
3840. For example and 1n at least one embodiment, warps 1n
thread block 3930(BlJ,1) can synchronize together and com-
municate through shared memory 3860(1). For example and
in at least one embodiment, warps 1n thread block 3930(BJ+
1,1) can synchronize together and communicate through
shared memory 3860(2).

FIG. 40 1llustrates how to migrate existing CUDA code to
Data Parallel C++ code, 1n accordance with at least one
embodiment. Data Parallel C++ (DPC++) may refer to an
open, standards-based alternative to single-architecture pro-
prictary languages that allows developers to reuse code
across hardware targets (CPUs and accelerators such as
GPUs and FPGAs) and also perform custom tuning for a
specific accelerator. DPC++ use similar and/or identical C
and C++ constructs 1 accordance with ISO C++ which
developers may be familiar with. DPC++ mncorporates stan-
dard SYCL from The Khronos Group to support data
parallelism and heterogeneous programming. SYCL refers
to a cross-platiorm abstraction layer that builds on under-
lying concepts, portability and efliciency of OpenCL that
enables code for heterogeneous processors to be written 1n
a “single-source” style using standard C++. SYCL may
cnable single source development where C++ template
functions can contain both host and device code to construct
complex algorithms that use OpenCL acceleration, and then
re-use them throughout their source code on diflerent types
of data.

In at least one embodiment, a DPC++ compiler 1s used to
compile DPC++ source code which can be deployed across
diverse hardware targets. In at least one embodiment, a
DPC++ compiler 1s used to generate DPC++ applications
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that can be deployed across diverse hardware targets and a
DPC++ compatibility tool can be used to migrate CUDA
applications to a multiplatform program in DPC++. In at
least one embodiment, a DPC++ base tool kit includes a
DPC++ compiler to deploy applications across diverse hard-
ware targets; a DPC++ library to increase productivity and
performance across CPUs, GPUs, and FPGAs; a DPC++
compatibility tool to migrate CUDA applications to multi-
platform applications; and any suitable combination thereof.

In at least one embodiment, a DPC++ programming
model 1s utilized to simply one or more aspects relating to
programming CPUs and accelerators by using modern C++
features to express parallelism with a programming lan-
guage called Data Parallel C++. DPC++ programming lan-
guage may be utilized to code reuse for hosts (e.g., a CPU)
and accelerators (e.g., a GPU or FPGA) using a single
source language, with execution and memory dependencies
being clearly communicated. Mappings within DPC++ code
can be used to transition an application to run on a hardware
or set of hardware devices that best accelerates a workload.
A host may be available to simplily development and
debugging of device code, even on platforms that do not
have an accelerator available.

In at least one embodiment, CUDA source code 4000 1s
provided as an iput to a DPC++ compatibility tool 4002 to
generate human readable DPC++ 4004. In at least one
embodiment, human readable DPC++ 4004 includes inline
comments generated by DPC++ compatibility tool 4002 that
guides a developer on how and/or where to modity DPC++
code to complete coding and tuning to desired performance
4006, thereby generating DPC++ source code 4008.

In at least one embodiment, CUDA source code 4000 1s
or includes a collection of human-readable source code 1n a
CUDA programming language. In at least one embodiment,
CUDA source code 4000 1s human-readable source code 1n
a CUDA programming language. In at least one embodi-
ment, a CUDA programming language 1s an extension of the
C++ programming language that includes, without limita-
tion, mechanisms to define device code and distinguish
between device code and host code. In at least one embodi-
ment, device code 1s source code that, after compilation, 1s
executable on a device (e.g., GPU or FPGA) and may
include or more parallelizable workflows that can be
executed on one or more processor cores of a device. In at
least one embodiment, a device may be a processor that 1s
optimized for parallel instruction processing, such as
CUDA-enabled GPU, GPU, or another GPGPU, etc. In at
least one embodiment, host code 1s source code that, after
compilation, 1s executable on a host. In least one embodi-
ment, some or all of host code and device code can be
executed 1n parallel across a CPU and GPU/FPGA. In at
least one embodiment, a host 1s a processor that 1s optimized
for sequential mstruction processing, such as CPU. CUDA
source code 4000 described 1n connection with FIG. 40 may
be 1in accordance with those discussed elsewhere in this
document.

In at least one embodiment, DPC++ compatibility tool
4002 refers to an executable tool, program, application, or
any other suitable type of tool that 1s used to facilitate
migration of CUDA source code 4000 to DPC++ source
code 4008. In at least one embodiment, DPC++ compatibil-
ity tool 4002 1s a command-line-based code migration tool
available as part of a DPC++ tool kit that 1s used to port
existing CUDA sources to DPC++. In at least one embodi-
ment, DPC++ compatibility tool 4002 converts some or all
source code of a CUDA application from CUDA to DPC++

and generates a resulting file that 1s written at least partially
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in DPC++, referred to as human readable DPC++ 4004. In
at least one embodiment, human readable DPC++ 4004
includes comments that are generated by DPC++ compat-
ibility tool 4002 to indicate where user intervention may be
necessary. In at least one embodiment, user intervention 1s
necessary when CUDA source code 4000 calls a CUDA API
that has no analogous DPC++ API; other examples where
user intervention 1s required are discussed later in greater
detaul.

In at least one embodiment, a worktlow for migrating
CUDA source code 4000 (e.g., application or portion
thereol) includes creating one or more compilation database
files; migrating CUDA to DPC++ using a DPC++ compat-
ibility tool 4002; completing migration and verifying cor-
rectness, thereby generating DPC++ source code 4008; and
compiling DPC++ source code 4008 with a DPC++ com-
piler to generate a DPC++ application. In at least one
embodiment, a compatibility tool provides a utility that
intercepts commands used when Makefile executes and
stores them 1n a compilation database file. In at least one
embodiment, a file 1s stored in JSON format. In at least one
embodiment, an intercept-built command converts Makefile
command to a DPC compatibility command.

In at least one embodiment, intercept-build 1s a utility

script that intercepts a build process to capture compilation
options, macro defs, and include paths, and writes this data
to a compilation database file. In at least one embodiment,
a compilation database file 1s a JSON file. In at least one
embodiment, DPC++ compatibility tool 4002 parses a com-
pilation database and applies options when migrating input
sources. In at least one embodiment, use of intercept-build
1s optional, but highly recommended for Make or CMake
based environments. In at least one embodiment, a migration
database includes commands, directories, and files: com-
mand may include necessary compilation flags; directory
may include paths to header files; file may include paths to
CUDA files.
In at least one embodiment, DPC++ compatibility tool
4002 miagrates CUDA code (e.g., applications) written 1n
CUDA to DPC++ by generating DPC++ wherever possible.
In at least one embodiment, DPC++ compatibility tool 4002
1s available as part of a tool kit. In at least one embodiment,
a DPC++ tool kit includes an intercept-build tool. In at least
one embodiment, an intercept-built tool creates a compila-
tion database that captures compilation commands to
migrate CUDA files. In at least one embodiment, a compi-
lation database generated by an intercept-built tool 1s used
by DPC++ compatibility tool 4002 to migrate CUDA code
to DPC++. In at least one embodiment, non-CUDA C++
code and files are migrated as 1s. In at least one embodiment,
DPC++ compatibility tool 4002 generates human readable
DPC++ 4004 which may be DPC++ code that, as generated
by DPC++ compatibility tool 4002, cannot be compiled by
DPC++ compiler and requires additional plumbing for veri-
tying portions of code that were not migrated correctly, and
may mvolve manual intervention, such as by a developer. In
at least one embodiment, DPC++ compatibility tool 4002
provides hints or tools embedded in code to help developers
manually migrate additional code that could not be migrated
automatically. In at least one embodiment, migration 1s a
one-time activity for a source file, project, or application.

In at least one embodiment, DPC++ compatibility tool
40002 1s able to successtully migrate all portions of CUDA
code to DPC++ and there may simply be an optional step for
manually veritying and tunming performance of DPC++
source code that was generated. In at least one embodiment,
DPC++ compatibility tool 4002 directly generates DPC++
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source code 4008 which 1s compiled by a DPC++ compiler
without requiring or utilizing human intervention to modify
DPC++ code generated by DPC++ compatibility tool 4002.
In at least one embodiment, DPC++ compatibility tool
generates compile-able DPC++ code which can be option-
ally tuned by a developer for performance, readability,
maintainability, other various considerations; or any com-
bination thereof.

In at least one embodiment, one or more CUDA source
files are migrated to DPC++ source files at least partially
using DPC++ compatibility tool 4002. In at least one
embodiment, CUDA source code includes one or more
header files which may include CUDA header files. In at
least one embodiment, a CUDA source file includes a
<cuda.h> header file and a <stdio.h> header file which can
be used to print text. In at least one embodiment, a portion
of a vector addition kernel CUDA source file may be written
as or related to:

#include <cuda.h>
#include <stdio.h>
#define VECTOR_SIZE 256
[ ] global_ void VectorAddKernel(float* A, float™ B, float™* C)
{
Afthreadldx.x] = threadldx.x + 1.01;
B[threadldx.x] = threadldx.x + 1.0{;
C[threadldx.x] = A[threadldx.x] + B[threadldx.x];

h

int main( )
{
float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, VECTOR_SIZE*sizeof(float));
cudaMalloc(&d_B, VECTOR_SIZE*s1zeof(float));
cudaMalloc(&d_C, VECTOR_SIZE*s1zeof(float));
VectorAddKernel<<<1, VECTOR_SIZE>>>(d_A, d_B, d_C);
float Result[VECTOR_SIZE] = { };
cudaMemcpy(Result, d_C, VECTOR_SIZE*sizeof{float),
cudaMemcpyDeviceToHost);
cudalree(d_A);
cudaFree(d_B);

cudaFree(d_C);
for (int i=0; i<VECTOR_SIZE; i++ {

if (i% 16 ==0) {
printf(*n”);
Iirintf(“%f", Result[1]);
h
return O;
h

In at least one embodiment and in connection with CUDA
source file presented above, DPC++ compatibility tool 4002
parses a CUDA source code and replaces header files with
appropriate DPC++ and SYCL header files. In at least one
embodiment, DPC++ header files includes helper declara-
tions. In CUDA, there 1s a concept of a thread ID and
correspondingly, in DPC++ or SYCL, for each element there
1s a local 1dentifier.

In at least one embodiment and in connection with CUDA
source file presented above, there are two vectors A and B
which are imitialized and a vector addition result 1s put nto
vector C as part of VectorAddKernel( ). In at least one
embodiment, DPC++ compatibility tool 4002 converts
CUDA thread IDs used to index work elements to SYCL

standard addressing for work elements via a local ID as part
of migrating CUDA code to DPC++ code. In at least one
embodiment, DPC++ code generated by DPC++ compat-
ibility tool 4002 can be optimized—tor example, by reduc-
ing dimensionality of an nd_item, thereby increasing
memory and/or processor utilization.
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In at least one embodiment and 1n connection with CUDA
source file presented above, memory allocation 1s migrated.
In at least one embodiment, cudaMalloc( ) 1s migrated to a
unified shared memory SYCL call malloc_device( ) to which
a device and context 1s passed, relying on SYCL concepts
such as platform, device, context, and queue. In at least one
embodiment, a SYCL platform can have multiple devices
(e.g., host and GPU devices); a device may have multiple
queues to which jobs can be submitted; each device may
have a context; and a context may have multiple devices and
manage shared memory objects.

In at least one embodiment and 1n connection with CUDA
source file presented above, a main( ) function invokes or
calls VectorAddKernel( ) to add two vectors A and B
together and store result 1n vector C. In at least one embodi-
ment, CUDA code to invoke VectorAddKernel( ) 1s replaced
by DPC++ code to submit a kernel to a command queue for
execution. In at least one embodiment, a command group
handler cgh passes data, synchronization, and computation
that 1s submitted to the queue, parallel_for 1s called for a
number of global elements and a number of work items in
that work group where VectorAddKernel( ) 1s called.

In at least one embodiment and 1n connection with CUDA
source lile presented above, CUDA calls to copy device
memory and then free memory for vectors A, B, and C are
migrated to corresponding DPC++ calls. In at least one
embodiment, C++ code (e.g., standard ISO C++ code for
printing a vector of tloating point variables) 1s migrated as
1s, without being modified by DPC++ compatibility tool
4002. In at least one embodiment, DPC++ compatibility tool
4002 modity CUDA APIs for memory setup and/or host
calls to execute kernel on the acceleration device. In at least

one embodiment and in connection with CUDA source file
presented above, a corresponding human readable DPC++
4004 (e.g., which can be compiled) 1s written as or related
to:

#include <CL/sycl.hpp>
#1nclude <dpct/dpct.hpp>
#define VECTOR_SIZE 256

void VectorAddKernel(float* A, float™ B, float® C,
sycl::nd_item<3> item_ctl)

{
Afitem_ctl.get local_1d(2)] = item_ctl.get local i1d(2) + 1.0f;
Blitem_ctl.get local 1d(2)] = item_ctl.get local 1d(2) + 1.01;
C[item_ctl.get_local_1d(2)] =
Alitem_ctl.get local 1d(2)] +
Blitem_ctl.get_local_1d(2)];
h
int main( )
i

float *d_A, *d B, *d C;

d_A = (float *)sycl::malloc_device(VECTOR_SIZE * sizeoi(float),
dpct::get_current_device( ),
dpct::get_default_context( ));

d_B = (float *)sycl::malloc_device(VECTOR_SIZE * sizeoi(float),
dpct::get_current_device( ),
dpct::get default _context( ));

d_C = (float *)sycl::malloc_device(VECTOR_SIZE * sizeoi(float),
dpct::get_current_device( ),
dpct::get_default_context( ));

dpct::get_default_queue_wait( ).submit([&](sycl::handler &cgh) {

cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, 1) *
sycl::range<3>(1, 1, VECTOR_SIZE) *
sycl:irange<3>(1, 1, VECTOR_SIZE)),
[=](sycl::ind_items<3> item_ctl) {
VectorAddKernel(d_A, d_B, d_C, item_ctl);
9
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-continued

float Result{f VECTOR_SIZE] = { };
dpct::get_default_queue wait( )
.memcpy(Result, d_C, VECTOR_SIZE * sizeof(float))
walt( );
sycl::free(d_A, dpct::get_default context( ));
sycl::free(d_B, dpct::get_default_context( ));
sycl::free(d_C, dpct::get_default_context( ));
for (int i=0; iI<VECTOR_SIZE; i++ {
if (i% 16 ==0) {

printf(*n’’);
h
printf(*%1”, Result[1]);
h
return O;

In at least one embodiment, human readable DPC++ 4004
refers to output generated by DPC++ compatibility tool
4002 and may be optimized 1n one manner or another. In at
least one embodiment, human readable DPC++ 4004 gen-
erated by DPC++ compatibility tool 4002 can be manually
edited by a developer after migration to make 1t more
maintainable, performance, or other considerations. In at
least one embodiment, DPC++ code generated by DPC++
compatibility tool 40002 such as DPC++ disclosed can be

optimized by removing repeat calls to get_current_device( )
and/or get default_context( ) for each malloc_device( ) call.
In at least one embodiment, DPC++ code generated above
uses a 3 dimensional nd_range which can be refactored to
use only a single dimension, thereby reducing memory
usage. In at least one embodiment, a developer can manually
edit DPC++ code generated by DPC++ compatibility tool
4002 replace uses of unified shared memory with accessors.
In at least one embodiment, DPC++ compatibility tool 4002
has an option to change how it migrates CUDA code to
DPC++ code. In at least one embodiment, DPC++ compat-
ibility tool 4002 1s verbose because 1t 1s using a general
template to migrate CUDA code to DPC++ code that works
for a large number of cases.

In at least one embodiment, a CUDA to DPC++ migration
worktlow 1ncludes steps to: prepare for migration using
intercept-build script; perform migration of CUDA projects
to DPC++ using DPC++ compatibility tool 4002; review and
edit migrated source files manually for completion and
correctness; and compile final DPC++ code to generate a
DPC++ application. In at least one embodiment, manual
review of DPC++ source code may be required in one or
more scenarios including but not limited to: migrated API
does not return error code (CUDA code can return an error
code which can then be consumed by the application but
SYCL uses exceptions to report errors, and therefore does
not use error codes to surface errors); CUDA compute
capability dependent logic 1s not supported by DPC++;
statement could not be removed. In at least one embodiment,
scenarios 1 which DPC++ code requires manual interven-
tion may include, without limitation: error code logic
replaced with (*,0) code or commented out; equivalent
DPC++ API not available; CUDA compute capability-de-
pendent logic; hardware-dependent API (clock( )); missing
features unsupported API; execution time measurement
logic; handling built-in vector type conflicts; migration of
cuBLAS API; and more.

At least one embodiment of the disclosure can be
described 1n view of the following clauses:

1. A system, comprising:

at least one processor;
at least one memory comprising stored instructions
that, 1n response to execution by the at least one

processor, cause the system to at least:
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select at least one light from among a plurality of
lights 1n a virtual area, wherein the at least one
light 1s selected based at least in part on a contri-
bution of the at least one light to lighting 1n a
subdivision of the virtual area;
store information indicative of the selected at least
one light 1n at least one record corresponding to
the subdivision of the virtual area; and
render a pixel of an 1image of the virtual area, based
at least 1n part on the stored information imndicative
of the at least one light.
2. The system of clause 1, wherein the subdivision of the
virtual area 1s one of a plurality of uniform subdivisions
of the virtual area.
3. The system of clause 2, wherein the uniform subdivi-
stons are defined to form a grid encompassing the
virtual area.
4. The system of any of clauses 1-3, wherein the at least
one light 1s selected based, at least in part, on a
probability proportional to the contribution of the at
least one light to lighting in the subdivision.
5. The system of any of clauses 1-4, the at least one
memory comprising stored instructions that, 1n
response to execution by the at least one processor,
cause the system to at least:
select the at least one light based on a probability
density function, wherein the probability density
function 1s based, at least in part, on 1ntensity of the
at least one light and distance between the at least
one light and the subdivision.
6. The system of any of clauses 1-5, wherein the at least
one light i1s selected by one of a plurality of threads
executed 1n parallel by a graphics processing unit.
7. The system of any of clauses 1-6, wherein the pixel 1s
rendered by at least 1identifying one or more subdivi-
s1ons proximate to the pixel and obtaining, from one or
more records associated with the one or more subdivi-
sions, mformation indicative of one or more lights.
8. The system of clause 7, wherein the pixel 1s rendered
based at least 1n part on a number of lights from the
subdivision, wherein the number 1s 1versely propor-
tional to distance between the subdivision and the
pixel.
9. A machine-readable medium having stored thereon
instructions which, 1 response to execution by one or
more processors, cause the one or more processors to at
least:
select at least one light from among a plurality of lights
in a virtual area, wherein the at least one light 1s
selected based at least in part on contribution of the
at least one light to lighting 1n a subdivision of the
virtual area;

store a record indicative of the selected at least one
light, the record corresponding to the subdivision of
the virtual area; and

render a pixel of an 1image of the virtual area, based at
least 1n part on the record indicative of the selected
at least one light.

10. The machine-readable medium of clause 9, wherein
the subdivision of the virtual area i1s one of a plurality
of uniform subdivisions of the virtual area.

11. The machine-readable medium of clause 9 or 10,
having stored thereon instructions which, 1n response to
execution by one or more processors, cause the one or
more processors to at least:
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select the at least one light based, at least in part, on a
probability distribution that 1s based, at least 1n part,
on the contribution of the at least one light to lighting
in the subdivision.

12. The machine-readable medium of any of clauses 9-11,
having stored thereon instructions which, in response to
execution by one or more processors, cause the one or
more processors to at least:
select the at least one light based, at least 1n part, on a

probability distribution that 1s based, at least 1n part,
on distance between the at least one light and the
subdivision.

13. The machine-readable medium of any of clauses 9-12,
having stored thereon instructions which, in response to
execution by one or more processors, cause the one or
more processors to at least:
select the at least one light based, at least 1n part, on

using resampled importance sampling.

14. The machine-readable medium of any of clauses 9-14,
having stored thereon instructions which, in response to
execution by one or more processors, cause the one or
more processors to at least:
select one or more plurality of lights, including the at

least one light, by at least executing, 1n parallel, a
corresponding number of one or more threads on a
graphics processing unit.

15. The machine-readable medium of any of clauses 9-14,
having stored thereon instructions which, in response to
execution by one or more processors, cause the one or
more processors to at least:
render the pixel by at least identilying one or more

subdivisions proximate to the pixel and obtaining,
from one or more records associated with the one or
more subdivisions, information indicative of one or
more lights stored 1n the one or more records.

16. The machine-readable medium of clause 15, having
stored thereon 1nstructions which, in response to execu-
tion by one or more processors, cause the one or more
processors to at least:
obtain, from one of the one or more records, informa-

tion indicative of a number of lights inversely pro-
portional to distance between the subdivision and the
pixel.

17. A method, comprising:
defining a plurality of subdivisions of a virtual area;
selecting at least one light from among a plurality of

lights 1n the virtual area, wherein the at least one
light 1s selected based at least 1n part on contribution
of the at least one light to lighting 1n a subdivision of
the plurality of subdivisions;

storing a record indicative of the selected at least one
light, the record associated with the subdivision; and

rendering a pixel of a graphical image, based at least 1n
part on the record indicative of the selected at least
one light.

18. The method of clause 17, wherein the plurality of
subdivisions comprise cells of a grid.

19. The method of any of clauses 17-18, wherein the at
least one light 1s selected based, at least in part, on a
probability distribution indicative of a contribution of
the at least one light to lighting 1n the subdivision.

20. The method of any of clauses 17-19, wherein the at
least one light 1s selected based, at least in part, on
distance between the at least one light and the subdi-
vision.
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21. The method of any of clauses 17-20, wherein the at
least one light 1s selected by executing a thread on a
graphics processing unit.

22. The method of any of clauses 17-21, further compris-
ng:
rendering the pixel by at least identifying one or more

subdivisions encompassing a region around the
pixel.

23. The method of clause 22, turther comprising:
selecting one or more lights to use to render the pixel,

the one or more lights selected from records associ-
ated with the one or more subdivisions based, at least
in part, on distance between the i1dentified subdivi-
sions and the pixel.

Other vanations are within spirit of present disclosure.

Thus, while disclosed techniques are susceptible to various

modifications and alternative constructions, certain illus-
trated embodiments thereof are shown in drawings and have
been described above 1n detail. It should be understood,
however, that there 1s no intention to limit disclosure to
specific form or forms disclosed, but on contrary, intention
1s to cover all modifications, alternative constructions, and
equivalents falling within spirit and scope of disclosure, as
defined 1n appended claims.

Use of terms “a” and “an” and “the” and similar referents
in context of describing disclosed embodiments (especially
in context of following claims) are to be construed to cover
both singular and plural, unless otherwise indicated herein
or clearly contradicted by context, and not as a definition of
a term. Terms “comprising,” “having,” “including,” and
“containing” are to be construed as open-ended terms
(meaning “including, but not limited to,”) unless otherwise
noted. term “connected,” when unmodified and referring to
physical connections, 1s to be construed as partly or wholly
contained within, attached to, or joined together, even 1f
there 1s something intervening. Recitation of ranges of
values herein are merely intended to serve as a shorthand
method of referring individually to each separate value
talling within range, unless otherwise indicated herein and
cach separate value 1s incorporated into specification as 1t 1t
were individually recited herein. Use of term “set” (e.g., “a
set of 1tems”™) or “subset” unless otherwise noted or contra-
dicted by context, 1s to be construed as a nonempty collec-
tion comprising one or more members. Further, unless
otherwise noted or contradicted by context, term “subset” of
a corresponding set does not necessarily denote a proper
subset of corresponding set, but subset and corresponding
set may be equal.

Conjunctive language, such as phrases of form “at least
one of A, B, and C,” or “at least one of A, B and C,” unless
specifically stated otherwise or otherwise clearly contra-
dicted by context, 1s otherwise understood with context as
used 1n general to present that an 1item, term, etc., may be
either A or B or C, or any nonempty subset of set of A and
B and C. For instance, in illustrative example of a set having
three members, conjunctive phrases “at least one of A, B,
and C” and “at least one of A, B and C” refer to any of
following sets: {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A,
B, C}. Thus, such conjunctive language is not generally
intended to imply that certain embodiments require at least
one of A, at least one of B and at least one of C each to be
present. In addition, unless otherwise noted or contradicted
by context, term “plurality” indicates a state of being plural
(e.g., “a plurality of items” indicates multiple 1tems). Num-
ber of items 1n a plurality is at least two, but can be more
when so indicated either explicitly or by context. Further,
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unless stated otherwise or otherwise clear from context,
phrase “based on” means “based at least 1n part on” and not
“based solely on.”

Operations of processes described herein can be per-
formed 1n any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. In at
least one embodiment, a process such as those processes
described herein (or variations and/or combinations thereof)
1s performed under control of one or more computer systems
configured with executable instructions and 1s implemented
as code (e.g., executable 1nstructions, one or more computer
programs or one¢ or more applications) executing collec-
tively on one or more processors, by hardware or combina-
tions thereof. In at least one embodiment, code 1s stored on
a computer-readable storage medium, for example, 1n form
ol a computer program comprising a plurality of instructions
executable by one or more processors. In at least one
embodiment, a computer-readable storage medium 1s a
non-transitory computer-readable storage medium that
excludes transitory signals (e.g., a propagating transient
clectric or electromagnetic transmission) but includes non-
transitory data storage circuitry (e.g., buflers, cache, and
queues ) within transceivers of transitory signals. In at least
one embodiment, code (e.g., executable code or source
code) 1s stored on a set of one or more non-transitory
computer-readable storage media having stored thereon
executable mstructions (or other memory to store executable
instructions) that, when executed (1.e., as a result of being
executed) by one or more processors ol a computer system,
cause computer system to perform operations described
herein. Set of non-transitory computer-readable storage
media, 1 at least one embodiment, comprises multiple
non-transitory computer-readable storage media and one or
more ol individual non-transitory storage media of multiple
non-transitory computer-readable storage media lack all of
code while multiple non-transitory computer-readable stor-
age media collectively store all of code. In at least one
embodiment, executable instructions are executed such that
different instructions are executed by different processors for
example, a non-transitory computer-readable storage
medium store mstructions and a main central processing unit
(“CPU”) executes some of instructions while a graphics
processing unit (“GPU”’) executes other instructions. In at
least one embodiment, different components of a computer
system have separate processors and different processors
execute different subsets of instructions.

Accordingly, 1n at least one embodiment, computer sys-
tems are configured to implement one or more services that
singly or collectively perform operations of processes
described herein and such computer systems are configured
with applicable hardware and/or software that enable per-
formance of operations. Further, a computer system that
implements at least one embodiment of present disclosure 1s
a single device and, 1n another embodiment, 1s a distributed
computer system comprising multiple devices that operate
differently such that distributed computer system performs
operations described herein and such that a single device
does not perform all operations.

Use of any and all examples, or exemplary language (e.g.,
“such as”) provided herein, 1s intended merely to better
illuminate embodiments of disclosure and does not pose a
limitation on scope of disclosure unless otherwise claimed.
No language 1 specification should be construed as indi-
cating any non-claimed element as essential to practice of
disclosure.

All references, including publications, patent applica-
tions, and patents, cited herein are hereby 1ncorporated by
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reference to same extent as 1f each reference were individu-
ally and specifically indicated to be incorporated by refer-
ence and were set forth 1n 1ts entirety herein.

In description and claims, terms “coupled” and “‘con-
nected,” along with their derivatives, may be used. It should
be understood that these terms may be not intended as
synonyms for each other. Rather, in particular examples,
“connected” or “coupled” may be used to indicate that two
or more elements are 1 direct or indirect physical or
clectrical contact with each other. “Coupled” may also mean
that two or more elements are not 1n direct contact with each
other, but yet still co-operate or interact with each other.

Unless specifically stated otherwise, 1t may be appreciated
that throughout specification terms such as “processing,”
“computing,” “calculating,” “determining,” or like, refer to
action and/or processes of a computer or computing system,
or similar electronic computing device, that manipulate
and/or transform data represented as physical, such as elec-
tronic, quantities within computing system’s registers and/or
memories into other data similarly represented as physical
quantities within computing system’s memories, registers or
other such information storage, transmission or display
devices.

In a similar manner, term “processor’” may refer to any
device or portion of a device that processes electronic data
from registers and/or memory and transform that electronic
data into other electronic data that may be stored 1n registers
and/or memory. As non-limiting examples, “processor” may
be a CPU or a GPU. A “computing platform™ may comprise
one or more processors. As used herein, “solftware” pro-
cesses may include, for example, software and/or hardware
entities that perform work over time, such as tasks, threads,
and intelligent agents. Also, each process may refer to
multiple processes, for carrying out instructions in sequence
or 1n parallel, continuously or intermittently. Terms *“sys-
tem” and “method” are used herein interchangeably insofar
as system may embody one or more methods and methods
may be considered a system.

In present document, references may be made to obtain-
Ing, acquiring, receiving, or iputting analog or digital data
into a subsystem, computer system, or computer-imple-
mented machine. Process of obtaining, acquiring, receiving,
or inputting analog and digital data can be accomplished 1n
a variety of ways such as by receiving data as a parameter
of a function call or a call to an application programming
interface. In some implementations, process ol obtaining,
acquiring, receiving, or mputting analog or digital data can
be accomplished by transierring data via a serial or parallel
interface. In another implementation, process of obtaining,
acquiring, receiving, or mputting analog or digital data can
be accomplished by transferring data via a computer net-
work from providing entity to acquiring entity. References
may also be made to providing, outputting, transmitting,
sending, or presenting analog or digital data. In various
examples, process of providing, outputting, transmitting,
sending, or presenting analog or digital data can be accom-
plished by transierring data as an input or output parameter
of a function call, a parameter of an application program-
ming interface or interprocess communication mechanism.

Although discussion above sets forth example implemen-
tations of described techniques, other architectures may be
used to implement described functionality, and are intended
to be within scope of this disclosure. Furthermore, although
specific distributions of responsibilities are defined above
for purposes of discussion, various functions and responsi-
bilities might be distributed and divided 1n different ways,
depending on circumstances.
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Furthermore, although subject matter has been described
in language specific to structural features and/or method-
ological acts, 1t 1s to be understood that subject matter
claimed 1n appended claims 1s not necessarily limited to
specific features or acts described. Rather, specific features
and acts are disclosed as exemplary forms of implementing
the claims.

What 1s claimed 1s:

1. A system, comprising;

at least one processor; and

at least one memory comprising stored instructions that,

in response to execution by the at least one processor,

cause the system to at least:

sample a first set of lights from among a plurality of
lights 1n each of a plurality of subdivisions of a
virtual area, wherein each of the first set of lights 1s
sampled from a corresponding subdivision of the
plurality of subdivisions based at least in part on a
contribution of the first set of lights 1n lighting the
corresponding subdivision;

store 1nformation indicative of the first set of lights
sampled from each of the plurality of subdivisions in
at least one cell of a data structure, wherein each cell
of the data structure corresponds to a subdivision of
the virtual area;

sample a second set of lights from a subset of the first
set of lights 1n each cell of the data structure; and

use the second set of lights to render a pixel of an 1mage
of the virtual area.

2. The system of claim 1, wherein each of the plurality of
subdivisions of the virtual area 1s a uniform subdivision of
the virtual area.

3. The system of claim 2, wherein each of the plurality of
subdivisions are defined to form a grid encompassing the
virtual area.

4. The system of claim 1, wherein the first set of lights 1s
sampled based, at least in part, on a probabaility proportional
to the contribution of the first set of lights to lighting 1n each
of the plurality of subdivisions.

5. The system of claam 1, the at least one memory
comprising stored mstructions that, in response to execution
by the at least one processor, cause the system to at least:

sample the first set of lights based on a probability density
function, wherein the probability density function 1s
based, at least 1n part, on intensity of the first set of
lights and distance between the first set of lights and

cach of the plurality of subdivisions.

6. The system of claim 1, wherein the first set of lights 1s
sampled by one of a plurality of threads executed 1n parallel
by a graphics processing unit.

7. The system of claim 1, wherein the pixel i1s rendered by
at least 1dentifying one or more subdivisions proximate to
the pixel and obtaining, from one or more cells of the data
structure corresponding to the one or more subdivisions,
information indicative of the second set of lights.

8. The system of claim 7, wherein the pixel 1s rendered
based at least 1 part on a number of lights from each of the
plurality of subdivisions, wherein the number 1s mversely
proportional to distance between each of the plurality of
subdivisions and the pixel.

9. A non-transitory machine-readable medium having
stored thereon instructions which, 1n response to execution
by one or more processors, cause the one or more processors
to at least:

sample a first set of lights from among a plurality of lights

in each of a plurality of subdivisions of a virtual area,
wherein each of the first set of lights 1s sampled from
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a corresponding subdivision of the plurality of subdi-
visions based at least in part on a contribution of the
first set of lights 1n lighting the corresponding subdi-
vision;

store information indicative of the first set of lights >

sampled from each of the plurality of subdivisions in at
least one cell of a data structure, wherein each cell of
the data structure corresponds to a subdivision of the
virtual area;

sample a second set of lights from a subset of the first set

of lights 1n each cell of the data structure;

and

use the second set of lights to render a pixel of an 1mage

of the virtual area.

10. The non-transitory machine-readable medium of
claim 9, wherein each of the plurality of subdivisions of the
virtual area 1s a uniform subdivision of the virtual area.

11. The non-transitory machine-readable medium of
claim 9, having stored thereon instructions which, 1n
response to execution by one or more processors, cause the
one or more processors to at least:

sample the first set of lights based, at least 1n part, on a

probability distribution that 1s based, at least in part, on
the contribution of the first set of lights to lighting in

cach of the plurality of subdivisions.

12. The non-transitory machine-readable medium of
claiam 9, having stored thereon instructions which, 1n
response to execution by one or more processors, cause the
one or more processors to at least:

sample the first set of lights based, at least 1n part, on a

probability distribution that 1s based, at least 1n part, on
distance between the first set of lights and each of the
plurality of subdivisions.

13. The non-transitory machine-readable medium of
claim 9, having stored thereon instructions which, 1n
response to execution by one or more processors, cause the
one or more processors to at least:

sample the first set of lights from the at least one cell of

the data structure based, at least in part, on using

resampled 1mportance sampling.

14. The non-transitory machine-readable medium of
claiam 9, having stored thereon instructions which, 1n
response to execution by one or more processors, cause the
one or more processors to at least:

sample the plurality of lights, including the first set of

lights, by at least executing, 1n parallel, a corresponding
number of one or more threads on a graphics process-
ing unit.

15. The non-transitory machine-readable medium of
claim 9, having stored thereon instructions which, in >©
response to execution by one or more processors, cause the
one or more processors to at least:

render the pixel by at least i1dentifying one or more

subdivisions proximate to the pixel and obtaining, from
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one or more cells of the data structure corresponding to
the one or more subdivisions, information indicative of
the second set of lights stored 1n the one or more cells
of the data structure.

16. The non-transitory machine-readable medium of
claam 15, having stored thereon instructions which, 1n
response to execution by one or more processors, cause the
one or more processors to at least:

obtain, from a cell of the data structure, information

indicative of a number of lights inversely proportional
to distance between each of the plurality of subdivi-
stons and the pixel.

17. A method, comprising:

defining a plurality of subdivisions of a virtual area;

sampling a first set of lights from among a plurality of

lights 1n each of a plurality of subdivisions of a virtual
area, wherein each of the first set of lights 1s sampled
from a corresponding subdivision of the plurality of
subdivisions based at least in part on a contribution of
the first set of lights in lighting the corresponding
subdivision;

storing 1nformation indicative of the first set of lights

sampled from each of the plurality of subdivisions in at
least one cell of a data structure, where each cell of the
data structure corresponds to a subdivision of the
virtual area;

sampling a second set of lights from a subset of the first

set of lights in each cell of the data structure; and
use the second set of lights to render a pixel of an 1mage
of the virtual area.

18. The method of claim 17, wherein the plurality of
subdivisions comprise cells of a grid.

19. The method of claim 17, wherein the first set of lights
1s sampled based, at least 1n part, on a probability distribu-
tion indicative of a contribution of the first set of lights to
lighting 1n each of the plurality of subdivisions.

20. The method of claim 17, wherein the first set of lights
1s sampled based, at least in part, on a distance between at
least one light of the first set of lights and each of the
plurality of subdivisions.

21. The method of claim 17, wherein the first set of lights
1s sampled by executing a thread on a graphics processing
unit.

22. The method of claim 17, further comprising;

rendering the pixel by at least identilying one or more

subdivisions encompassing a region around the pixel.

23. The method of claim 22, further comprising;

selecting samples of the second set of lights to use to

render the pixel, the second set of lights selected from
one or more cells of the data structure corresponding to
the one or more subdivisions based, at least 1n part, on
distance between the identified one or more subdivi-
stons and the pixel.
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