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PERCEPTUALLY-BASED FOVEATED
RENDERING USING A
CONTRAST-ENHANCING FILTER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/305,452 titled “Specular Antialiasing
with Normal Distribution Function Pre-filtering,” filed Mar.
8, 2016, the entire contents of which is incorporated herein
by reference. This application also claims the benefit of U.S.
Provisional Application No. 62/366,554 titled “Perceptu-
ally-Based Foveated Rendering Using a Contrast-Enhancing
Filter,” filed Jul. 25, 2016, the entire contents of which is
incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to graphics processing, and
more particularly to foveated rendering.

BACKGROUND

Foveated rendering systems have been used to reduce the
amount of calculations required to render an image. Fove-
ated rendering systems take advantage of the physiological
trait of the human eye in that the distribution of rods and
cones across a human retina is not constant. A user’s visual
perception will have higher acuity in the fovea than at the
periphery of the retina. Consequently, portions of an image
in the periphery relative to a viewer’s line of sight may be
rendered at a lower resolution or level of detail in order to
save on compute bandwidth in real-time rendering systems.

However, this reduction in computations results in some
artifacts. Notably, viewers may perceive aliasing in the
periphery of the image where the shading rate has been
reduced. The viewers may also complain of tunnel vision
where the blurring in the periphery of the image is too
extreme and the user’s visual perception of the lower-
resolution portion of the image is distracting. Finally, current
foveated rendering systems may be designed for desktop
displays and not, high resolution, high field of view head
mounted displays that have different requirements for the
foveated rendering system. Thus, there is a need for address-
ing these issues and/or other issues associated with the prior
art.

SUMMARY

A method, computer readable medium, and system are
disclosed for rendering images utilizing a foveated rendering
algorithm with post-process filtering to enhance a contrast of
the foveated image. The method includes the step of receiv-
ing a three-dimensional scene, rendering the 3D scene
according to a foveated rendering algorithm to generate a
foveated image, and filtering the foveated image using a
contrast-enhancing filter to generate a filtered foveated
image. The foveated rendering algorithm may incorporate
aspects of coarse pixel shading, mipmapped texture maps,
linear efficient anti-aliased normal maps, exponential vari-
ance shadow maps, and specular anti-aliasing techniques.
The foveated rendering algorithm may also be combined
with temporal anti-aliasing techniques to further reduce
artifacts in the foveated image.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method for rendering a
foveated image, in accordance with one embodiment;
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FIG. 2 illustrates a parallel processing unit (PPU), in
accordance with one embodiment;

FIG. 3A illustrates a general processing cluster of the PPU
of FIG. 2, in accordance with one embodiment;

FIG. 3B illustrates a partition unit of the PPU of FIG. 2,
in accordance with one embodiment;

FIG. 4 illustrates the streaming multi-processor of FIG.
3A, in accordance with one embodiment;

FIG. 5 illustrates a system-on-chip including the PPU of
FIG. 2, in accordance with one embodiment;

FIG. 6 is a conceptual diagram of a graphics processing
pipeline implemented by the PPU of FIG. 2, in accordance
with one embodiment;

FIG. 7 illustrates a foveated rendering system, in accor-
dance with one embodiment;

FIG. 8 illustrates a foveated rendering system, in accor-
dance with one embodiment;

FIG. 9 illustrates a foveated rendering algorithm, in
accordance with one embodiment;

FIG. 10 illustrates a flowchart of a method for generating
a filtered foveated image, in accordance with one embodi-
ment;

FIG. 11 illustrates a micro-facet model for light scattering
simulation, in accordance with one embodiment;

FIGS. 12A & 12B illustrate a technique for filtering NDFs
for direct lighting simulation, in accordance with one
embodiment;

FIG. 13 illustrates a flowchart of a method for calculating
a specular highlight component of a color value for a sample
location, in accordance with one embodiment; and

FIG. 14 illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

DETAILED DESCRIPTION

Foveated rendering is an important technology for
improving the efficiency of high-resolution and high field-
of-view (FOV) graphics applications, which may be inti-
mately related to Virtual Reality (VR) or Augmented Reality
(AR) systems, although foveated rendering can also be
implemented in desktop display systems. Foveated render-
ing may be used with gaze-tracking displays, which may
include a display (or a pair of displays) along with one or
more sensors for tracking the line of sight of a viewer. For
example, a camera or cameras may be used to capture
images of a user’s eyes, and image processing techniques
may be used to estimate a line of sight of the user based on
the captured images. The line of sight is mapped to a
location in an image that corresponds with a point of focus
on the display. The image for display is then rendered with
a variable shading rates, where a maximum shading rate
corresponds with the location in the image that corresponds
with the point of focus on the display. The image will be
perceived by the viewer such that pixels rendered at a higher
shading rate are perceived on the fovea of the viewer’s eye,
and pixels rendered at a lower shading rate are perceived on
the periphery of the retina. Since the fovea is associated with
higher visual acuity, more rendering time is spent focused on
the portions of the image that will be perceived on the fovea.

Existing solutions for foveated rendering result in notice-
able artifacts in the peripheral vision (e.g., temporal aliasing,
flicker, and tunnel-vision) and, therefore, cannot be pushed
to aggressive levels. A perceptually-based foveated render-
ing technique employs a contrast-enhancing filter to images
rendered using a foveated rendering algorithm to address
contrast loss in the periphery of the image, which has a large



US 10,438,400 B2

3

effect on the perceived quality of the image. The foveated
rendering algorithm incorporates a number of pre-filtering
techniques during rendering, including the use of specular
anti-aliasing, exponential variance shadow maps (EVSM),
and linear efficient anti-aliased normal (LEAN) maps. Fur-
thermore, the foveated rendering system integrates temporal
anti-aliasing techniques that improve temporal stability of
the image. Consequently, the foveated rendering technique
discussed below is superior to, and more efficient than,
existing solutions.

FIG. 1 illustrates a flowchart of a method 100 for render-
ing a foveated image, in accordance with one embodiment.
It will be appreciated that the method 100 is described within
the scope of software executed by a processor; however, in
some embodiments, the method 100 may be implemented in
hardware or some combination of hardware and software.
The method 100 begins at step 102, where a three-dimen-
sional (3D) scene is received. The 3D scene may be specified
as a plurality of geometric primitives generated by a graph-
ics application and stored in a memory. At step 104, the 3D
scene is rendered according to a foveated rendering algo-
rithm to generate a foveated image. In one embodiment, the
3D scene may be rendered by a graphics processing pipeline
that incorporates a fragment shader implementing the fove-
ated rendering algorithm. The geometric primitives of the
3D scene may be transformed in a vertex shading stage and
rasterized in a rasterization stage of the graphics processing
pipeline to produce fragments for processing by the frag-
ment shader. These fragments are then processed at a
variable shading rate set based on sensor feedback from a
gaze-tracking display.

In one embodiment, the foveated rendering algorithm is
implemented as a coarse pixel shading shader, the execution
of which is shared by multiple fragments and includes
instructions configured to: (1) sample a mip-mapped texture
map at a level-of-detail (LOD) calculated based on, at least
in part, a variable shading rate corresponding with a sample
location; (2) sample a LEAN map for calculating lighting
effects; and/or (3) sample an EVSM for calculating shadows.
The foveated rendering algorithm may also incorporate a
form of temporal anti-aliasing (TAA) in a post-process step
to blend the foveated image for a current frame with a
foveated image for a previous frame.

At step 106, the foveated image is filtered using a con-
trast-enhancing filter to generate a filtered foveated image.
The contrast-enhancing filter comprises, for each pixel in the
foveated image, calculating a contrast-enhanced color for
the pixel that in effect is a linear redistribution of colors
around a mean of a color distribution proximate the pixel.
The contrast-enhancing filter reduces the effect of the arti-
facts in the periphery of the foveated image by boosting the
contrast in those portions of the image. At step 108, the
filtered foveated image is displayed to a viewer on a gaze-
tracking display.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may or may not be implemented,
per the desires of the user. It should be strongly noted that
the following information is set forth for illustrative pur-
poses and should not be construed as limiting in any manner.
Any of the following features may be optionally incorpo-
rated with or without the exclusion of other features
described.

Parallel Processing Architecture

FIG. 2 illustrates a parallel processing unit (PPU) 200, in
accordance with one embodiment. In one embodiment, the
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PPU 200 is a multi-threaded processor that is implemented
on one or more integrated circuit devices. The PPU 200 is a
latency hiding architecture designed to process a large
number of threads in parallel. A thread (i.e., a thread of
execution) is an instantiation of a set of instructions config-
ured to be executed by the PPU 200. In one embodiment, the
PPU 200 is a graphics processing unit (GPU) configured to
implement a graphics rendering pipeline for processing
three-dimensional (3D) graphics data in order to generate
two-dimensional (2D) image data for display on a display
device such as a liquid crystal display (LCD) device. In
other embodiments, the PPU 200 may be utilized for per-
forming general-purpose computations. While one exem-
plary parallel processor is provided herein for illustrative
purposes, it should be strongly noted that such processor is
set forth for illustrative purposes only, and that any proces-
sor may be employed to supplement and/or substitute for the
same.

As shown in FIG. 2, the PPU 200 includes an Input/
Output (I/0) unit 205, a host interface unit 210, a front end
unit 215, a scheduler unit 220, a work distribution unit 225,
a hub 230, a crossbar (Xbar) 270, one or more general
processing clusters (GPCs) 250, and one or more partition
units 280. The PPU 200 may be connected to a host
processor or other peripheral devices via a system bus 202.
The PPU 200 may also be connected to a local memory
comprising a number of memory devices 204. In one
embodiment, the local memory may comprise a number of
dynamic random access memory (DRAM) devices.

The 1/O unit 205 is configured to transmit and receive
communications (i.e., commands, data, etc.) from a host
processor (not shown) over the system bus 202. The /O unit
205 may communicate with the host processor directly via
the system bus 202 or through one or more intermediate
devices such as a memory bridge. In one embodiment, the
1/O unit 205 implements a Peripheral Component Intercon-
nect Express (PCle) interface for communications over a
PCle bus. In alternative embodiments, the I/O unit 205 may
implement other types of well-known interfaces for com-
municating with external devices.

The I/O unit 205 is coupled to a host interface unit 210
that decodes packets received via the system bus 202. In one
embodiment, the packets represent commands configured to
cause the PPU 200 to perform various operations. The host
interface unit 210 transmits the decoded commands to
various other units of the PPU 200 as the commands may
specify. For example, some commands may be transmitted
to the front end unit 215. Other commands may be trans-
mitted to the hub 230 or other units of the PPU 200 such as
one or more copy engines, a video encoder, a video decoder,
a power management unit, etc. (not explicitly shown). In
other words, the host interface unit 210 is configured to route
communications between and among the various logical
units of the PPU 200.

In one embodiment, a program executed by the host
processor encodes a command stream in a buffer that pro-
vides workloads to the PPU 200 for processing. A workload
may comprise a number of instructions and data to be
processed by those instructions. The buffer is a region in a
memory that is accessible (i.e., read/write) by both the host
processor and the PPU 200. For example, the host interface
unit 210 may be configured to access the buffer in a system
memory connected to the system bus 202 via memory
requests transmitted over the system bus 202 by the I/O unit
205. In one embodiment, the host processor writes the
command stream to the buffer and then transmits a pointer
to the start of the command stream to the PPU 200. The host



US 10,438,400 B2

5

interface unit 210 provides the front end unit 215 with
pointers to one or more command streams. The front end
unit 215 manages the one or more streams, reading com-
mands from the streams and forwarding commands to the
various units of the PPU 200.

The front end unit 215 is coupled to a scheduler unit 220
that configures the various GPCs 250 to process tasks
defined by the one or more streams. The scheduler unit 220
is configured to track state information related to the various
tasks managed by the scheduler unit 220. The state may
indicate which GPC 250 a task is assigned to, whether the
task is active or inactive, a priority level associated with the
task, and so forth. The scheduler unit 220 manages the
execution of a plurality of tasks on the one or more GPCs
250.

The scheduler unit 220 is coupled to a work distribution
unit 225 that is configured to dispatch tasks for execution on
the GPCs 250. The work distribution unit 225 may track a
number of scheduled tasks received from the scheduler unit
220. In one embodiment, the work distribution unit 225
manages a pending task pool and an active task pool for each
of the GPCs 250. The pending task pool may comprise a
number of slots (e.g., 32 slots) that contain tasks assigned to
be processed by a particular GPC 250. The active task pool
may comprise a number of slots (e.g., 4 slots) for tasks that
are actively being processed by the GPCs 250. As a GPC 250
finishes the execution of a task, that task is evicted from the
active task pool for the GPC 250 and one of the other tasks
from the pending task pool is selected and scheduled for
execution on the GPC 250. If an active task has been idle on
the GPC 250, such as while waiting for a data dependency
to be resolved, then the active task may be evicted from the
GPC 250 and returned to the pending task pool while
another task in the pending task pool is selected and sched-
uled for execution on the GPC 250.

The work distribution unit 225 communicates with the
one or more GPCs 250 via XBar 270. The XBar 270 is an
interconnect network that couples many of the units of the
PPU 200 to other units of the PPU 200. For example, the
XBar 270 may be configured to couple the work distribution
unit 225 to a particular GPC 250. Although not shown
explicitly, one or more other units of the PPU 200 are
coupled to the host unit 210. The other units may also be
connected to the XBar 270 via a hub 230.

The tasks are managed by the scheduler unit 220 and
dispatched to a GPC 250 by the work distribution unit 225.
The GPC 250 is configured to process the task and generate
results. The results may be consumed by other tasks within
the GPC 250, routed to a different GPC 250 via the XBar
270, or stored in the memory 204. The results can be written
to the memory 204 via the partition units 280, which
implement a memory interface for reading and writing data
to/from the memory 204. In one embodiment, the PPU 200
includes a number U of partition units 280 that is equal to the
number of separate and distinct memory devices 204
coupled to the PPU 200. A partition unit 280 will be
described in more detail below in conjunction with FIG. 3B.

In one embodiment, a host processor executes a driver
kernel that implements an application programming inter-
face (API) that enables one or more applications executing
on the host processor to schedule operations for execution
on the PPU 200. An application may generate instructions
(i.e., API calls) that cause the driver kernel to generate one
or more tasks for execution by the PPU 200. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 200. Each task may comprise one or more
groups of related threads, referred to herein as a warp. A
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thread block may refer to a plurality of groups of threads
including instructions to perform the task. Threads in the
same group of threads may exchange data through shared
memory. In one embodiment, a group of threads comprises
32 related threads.

FIG. 3A illustrates a GPC 250 of the PPU 200 of FIG. 2,
in accordance with one embodiment. As shown in FIG. 3A,
each GPC 250 includes a number of hardware units for
processing tasks. In one embodiment, each GPC 250
includes a pipeline manager 310, a pre-raster operations unit
(PROP) 315, a raster engine 325, a work distribution cross-
bar (WDX) 380, a memory management unit (MMU) 390,
and one or more Texture Processing Clusters (TPCs) 320. It
will be appreciated that the GPC 250 of FIG. 3A may include
other hardware units in lieu of or in addition to the units
shown in FIG. 3A.

In one embodiment, the operation of the GPC 250 is
controlled by the pipeline manager 310. The pipeline man-
ager 310 manages the configuration of the one or more TPCs
320 for processing tasks allocated to the GPC 250. In one
embodiment, the pipeline manager 310 may configure at
least one of the one or more TPCs 320 to implement at least
a portion of a graphics rendering pipeline. For example, a
TPC 320 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 340. The pipeline manager 310 may also be configured
to route packets received from the work distribution unit 225
to the appropriate logical units within the GPC 250. For
example, some packets may be routed to fixed function
hardware units in the PROP 315 and/or raster engine 325
while other packets may be routed to the TPCs 320 for
processing by the primitive engine 335 or the SM 340.

The PROP unit 315 is configured to route data generated
by the raster engine 325 and the TPCs 320 to a Raster
Operations (ROP) unit in the partition unit 280, described in
more detail below. The PROP unit 315 may also be config-
ured to perform optimizations for color blending, organize
pixel data, perform address translations, and the like.

The raster engine 325 includes a number of fixed function
hardware units configured to perform various raster opera-
tions. In one embodiment, the raster engine 325 includes a
setup engine, a course raster engine, a culling engine, a
clipping engine, a fine raster engine, and a tile coalescing
engine. The setup engine receives transformed vertices and
generates plane equations associated with the geometric
primitive defined by the vertices. The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e.g., an X,y coverage mask for a tile) for the
primitive. The output of the coarse raster engine may
transmitted to the culling engine where fragments associated
with the primitive that fail a z-test are culled, and transmitted
to a clipping engine where fragments lying outside a view-
ing frustum are clipped. Those fragments that survive clip-
ping and culling may be passed to a fine raster engine to
generate attributes for the pixel fragments based on the plane
equations generated by the setup engine. The output of the
raster engine 325 comprises fragments to be processed, for
example, by a fragment shader implemented within a TPC
320.

Each TPC 320 included in the GPC 250 includes an
M-Pipe Controller (MPC) 330, a primitive engine 335, one
or more SMs 340, and one or more texture units 345. The
MPC 330 controls the operation of the TPC 320, routing
packets received from the pipeline manager 310 to the
appropriate units in the TPC 320. For example, packets
associated with a vertex may be routed to the primitive
engine 335, which is configured to fetch vertex attributes
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associated with the vertex from the memory 204. In contrast,
packets associated with a shader program may be transmit-
ted to the SM 340.

In one embodiment, the texture units 345 are configured
to load texture maps (e.g., a 2D array of texels) from the
memory 204 and sample the texture maps to produce
sampled texture values for use in shader programs executed
by the SM 340. The texture units 345 implement texture
operations such as filtering operations using mip-maps (i.e.,
texture maps of varying levels of detail). The texture unit
345 is also used as the Load/Store path for SM 340 to MMU
390. In one embodiment, each TPC 320 includes two (2)
texture units 345.

The SM 340 comprises a programmable streaming pro-
cessor that is configured to process tasks represented by a
number of threads. Each SM 340 is multi-threaded and
configured to execute a plurality of threads (e.g., 32 threads)
from a particular group of threads concurrently. In one
embodiment, the SM 340 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
in a group of threads (i.e., a warp) is configured to process
a different set of data based on the same set of instructions.
All threads in the group of threads execute the same instruc-
tions. In another embodiment, the SM 340 implements a
SIMT (Single-Instruction, Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions, but where individual threads in the group of
threads are allowed to diverge during execution. In other
words, when an instruction for the group of threads is
dispatched for execution, some threads in the group of
threads may be active, thereby executing the instruction,
while other threads in the group of threads may be inactive,
thereby performing a no-operation (NOP) instead of execut-
ing the instruction. The SM 340 may be described in more
detail below in conjunction with FIG. 4.

The MMU 390 provides an interface between the GPC
250 and the partition unit 280. The MMU 390 may provide
translation of virtual addresses into physical addresses,
memory protection, and arbitration of memory requests. In
one embodiment, the MMU 390 provides one or more
translation lookaside buffers (TLBs) for improving transla-
tion of virtual addresses into physical addresses in the
memory 204.

FIG. 3B illustrates a partition unit 280 of the PPU 200 of
FIG. 2, in accordance with one embodiment. As shown in
FIG. 3B, the partition unit 280 includes a Raster Operations
(ROP) unit 350, a level two (L.2) cache 360, a memory
interface 370, and an L2 crossbar (XBar) 365. The memory
interface 370 is coupled to the memory 204. Memory
interface 370 may implement 16, 32, 64, 128-bit data buses,
or the like, for high-speed data transfer. In one embodiment,
the PPU 200 comprises U memory interfaces 370, one
memory interface 370 per partition unit 280, where each
partition unit 280 is connected to a corresponding memory
device 204. For example, PPU 200 may be connected to up
to U memory devices 204, such as graphics double-data-
rate, version 5, synchronous dynamic random access
memory (GDDRS SDRAM). In one embodiment, the
memory interface 370 implements a DRAM interface and U
is equal to 8.

In one embodiment, the PPU 200 implements a multi-
level memory hierarchy. The memory 204 is located off-chip
in SDRAM coupled to the PPU 200. Data from the memory
204 may be fetched and stored in the [.2 cache 360, which
is located on-chip and is shared between the various GPCs
250. As shown, each partition unit 280 includes a portion of
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the L.2 cache 360 associated with a corresponding memory
device 204. Lower level caches may then be implemented in
various units within the GPCs 250. For example, each of the
SMs 340 may implement a level one (L.1) cache. The L1
cache is private memory that is dedicated to a particular SM
340. Data from the [.2 cache 360 may be fetched and stored
in each of the L1 caches for processing in the functional
units of the SMs 340. The .2 cache 360 is coupled to the
memory interface 370 and the XBar 270.

The ROP unit 350 includes a ROP Manager 355, a Color
ROP (CROP) unit 352, and a Z ROP (ZROP) unit 354. The
CROP unit 352 performs raster operations related to pixel
color, such as color compression, pixel blending, and the
like. The ZROP unit 354 implements depth testing in con-
junction with the raster engine 325. The ZROP unit 354
receives a depth for a sample location associated with a pixel
fragment from the culling engine of the raster engine 325.
The ZROP unit 354 tests the depth against a corresponding
depth in a depth buffer for a sample location associated with
the fragment. If the fragment passes the depth test for the
sample location, then the ZROP unit 354 updates the depth
buffer and transmits a result of the depth test to the raster
engine 325. The ROP Manager 355 controls the operation of
the ROP unit 350. It will be appreciated that the number of
partition units 280 may be different than the number of
GPCs 250 and, therefore, each ROP unit 350 may be
coupled to each of the GPCs 250. Therefore, the ROP
Manager 355 tracks packets received from the different
GPCs 250 and determines which GPC 250 that a result
generated by the ROP unit 350 is routed to. The CROP unit
352 and the ZROP unit 354 are coupled to the L2 cache 360
via an L.2 XBar 365.

FIG. 4 illustrates the streaming multi-processor 340 of
FIG. 3A, in accordance with one embodiment. As shown in
FIG. 4, the SM 340 includes an instruction cache 405, one
or more scheduler units 410, a register file 420, one or more
processing cores 450, one or more special function units
(SFUs) 452, one or more load/store units (LSUs) 454, an
interconnect network 480, a shared memory 470 and an .1
cache 490.

As described above, the work distribution unit 225 dis-
patches tasks for execution on the GPCs 250 of the PPU 200.
The tasks are allocated to a particular TPC 320 within a GPC
250 and, if the task is associated with a shader program, the
task may be allocated to an SM 340. The scheduler unit 410
receives the tasks from the work distribution unit 225 and
manages instruction scheduling for one or more groups of
threads (i.e., warps) assigned to the SM 340. The scheduler
unit 410 schedules threads for execution in groups of
parallel threads, where each group is called a warp. In one
embodiment, each warp includes 32 threads. The scheduler
unit 410 may manage a plurality of different warps, sched-
uling the warps for execution and then dispatching instruc-
tions from the plurality of different warps to the various
functional units (i.e., cores 350, SFUs 352, and LSUs 354)
during each clock cycle.

In one embodiment, each scheduler unit 410 includes one
or more instruction dispatch units 415. Each dispatch unit
415 is configured to transmit instructions to one or more of
the functional units. In the embodiment shown in FIG. 4, the
scheduler unit 410 includes two dispatch units 415 that
enable two different instructions from the same warp to be
dispatched during each clock cycle. In alternative embodi-
ments, each scheduler unit 410 may include a single dispatch
unit 415 or additional dispatch units 415.

Each SM 340 includes a register file 420 that provides a
set of registers for the functional units of the SM 340. In one
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embodiment, the register file 420 is divided between each of
the functional units such that each functional unit is allo-
cated a dedicated portion of the register file 420. In another
embodiment, the register file 420 is divided between the
different warps being executed by the SM 340. The register
file 420 provides temporary storage for operands connected
to the data paths of the functional units.

Each SM 340 comprises L processing cores 450. In one
embodiment, the SM 340 includes a large number (e.g., 128,
etc.) of distinct processing cores 450. Each core 450 may
include a fully-pipelined, single-precision processing unit
that includes a floating point arithmetic logic unit and an
integer arithmetic logic unit. The core 450 may also include
a double-precision processing unit including a floating point
arithmetic logic unit. In one embodiment, the floating point
arithmetic logic units implement the IEEE 754-2008 stan-
dard for floating point arithmetic. Each SM 340 also com-
prises M SFUs 452 that perform special functions (e.g.,
attribute evaluation, reciprocal square root, and the like), and
N LSUs 454 that implement load and store operations
between the shared memory 470 or [.1 cache 490 and the
register file 420. In one embodiment, the SM 340 includes
128 cores 450, 32 SFUs 452, and 32 LSUs 454.

Each SM 340 includes an interconnect network 480 that
connects each of the functional units to the register file 420
and the LSU 454 to the register file 420, shared memory 470
and L1 cache 490. In one embodiment, the interconnect
network 480 is a crossbar that can be configured to connect
any of the functional units to any of the registers in the
register file 420 and connect the LSUs 454 to the register file
and memory locations in shared memory 470 and L1 cache
490.

The shared memory 470 is an array of on-chip memory
that allows for data storage and communication between the
SM 340 and the primitive engine 335 and between threads
in the SM 340. In one embodiment, the shared memory 470
comprises 64 KB of storage capacity. An L1 cache 490 is in
the path from the SM 340 to the partition unit 280. The L1
cache 490 can be used to cache reads and writes. In one
embodiment, the L1 cache 490 comprises 24 KB of storage
capacity.

The PPU 200 described above may be configured to
perform highly parallel computations much faster than con-
ventional CPUs. Parallel computing has advantages in
graphics processing, data compression, biometrics, stream
processing algorithms, and the like.

When configured for general purpose parallel computa-
tion, a simpler configuration can be used. In this model, as
shown in FIG. 2, fixed function graphics processing units are
bypassed, creating a much simpler programming model. In
this configuration, the Work Distribution Unit 225 assigns
and distributes blocks of threads directly to the TPCs 320.
The threads in a block execute the same program, using a
unique thread ID in the calculation to ensure each thread
generates unique results, using the SM 340 to execute the
program and perform calculations, shared memory 470
communicate between threads, and the LSU 454 to read and
write Global memory through partition [.1 cache 490 and
partition unit 280.

When configured for general purpose parallel computa-
tion, the SM 340 can also write commands that scheduler
unit 220 can use to launch new work on the TPCs 320.

In one embodiment, the PPU 200 comprises a graphics
processing unit (GPU). The PPU 200 is configured to
receive commands that specify shader programs for process-
ing graphics data. Graphics data may be defined as a set of
primitives such as points, lines, triangles, quads, triangle
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strips, and the like. Typically, a primitive includes data that
specifies a number of vertices for the primitive (e.g., in a
model-space coordinate system) as well as attributes asso-
ciated with each vertex of the primitive. The PPU 200 can
be configured to process the graphics primitives to generate
a frame buffer (i.e., pixel data for each of the pixels of the
display).

An application writes model data for a scene (ie., a
collection of vertices and attributes) to a memory such as a
system memory or memory 204. The model data defines
each of the objects that may be visible on a display. The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data. The commands may reference different shader
programs to be implemented on the SMs 340 of the PPU 200
including one or more of a vertex shader, hull shader,
domain shader, geometry shader, and a pixel shader. For
example, one or more of the SMs 340 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data. In one embodiment, the
different SMs 340 may be configured to execute different
shader programs concurrently. For example, a first subset of
SMs 340 may be configured to execute a vertex shader
program while a second subset of SMs 340 may be config-
ured to execute a pixel shader program. The first subset of
SMs 340 processes vertex data to produce processed vertex
data and writes the processed vertex data to the L2 cache 360
and/or the memory 204. After the processed vertex data is
rasterized (i.e., transformed from three-dimensional data
into two-dimensional data in screen space) to produce
fragment data, the second subset of SMs 340 executes a
pixel shader to produce processed fragment data, which is
then blended with other processed fragment data and written
to the frame buffer in memory 204. The vertex shader
program and pixel shader program may execute concur-
rently, processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer. Then, the contents of the
frame buffer are transmitted to a display controller for
display on a display device.

The PPU 200 may be included in a desktop computer, a
laptop computer, a tablet computer, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant
(PDA), a digital camera, a hand-held electronic device, and
the like. In one embodiment, the PPU 200 is embodied on a
single semiconductor substrate. In another embodiment, the
PPU 200 is included in a system-on-a-chip (SoC) along with
one or more other logic units such as a reduced instruction
set computer (RISC) CPU, a memory management unit
(MMU), a digital-to-analog converter (DAC), and the like.

In one embodiment, the PPU 200 may be included on a
graphics card that includes one or more memory devices 204
such as GDDRS SDRAM. The graphics card may be con-
figured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 200 may be an integrated graphics processing unit
(iGPU) included in the chipset (i.e., Northbridge) of the
motherboard.

FIG. 5 illustrates a System-on-Chip (SoC) 500 including
the PPU 200 of FIG. 2, in accordance with one embodiment.
As shown in FIG. 5, the SoC 500 includes a CPU 550 and
a PPU 200, as described above. The SoC 500 may also
include a system bus 202 to enable communication between
the various components of the SoC 500. Memory requests



US 10,438,400 B2

11

generated by the CPU 550 and the PPU 200 may be routed
through a system MMU 590 that is shared by multiple
components of the SoC 500. The SoC 500 may also include
a memory interface 595 that is coupled to one or more
memory devices 204. The memory interface 595 may imple-
ment, e.g., a DRAM interface.

Although not shown explicitly, the SoC 500 may include
other components in addition to the components shown in
FIG. 5. For example, the SoC 500 may include multiple
PPUs 200 (e.g., four PPUs 200), a video encoder/decoder,
and a wireless broadband transceiver as well as other
components. In one embodiment, the SoC 500 may be
included with the memory 204 in a package-on-package
(PoP) configuration.

FIG. 6 is a conceptual diagram of a graphics processing
pipeline 600 implemented by the PPU 200 of FIG. 2, in
accordance with one embodiment. The graphics processing
pipeline 600 is an abstract flow diagram of the processing
steps implemented to generate 2D computer-generated
images from 3D geometry data. As is well-known, pipeline
architectures may perform long latency operations more
efficiently by splitting up the operation into a plurality of
stages, where the output of each stage is coupled to the input
of the next successive stage. Thus, the graphics processing
pipeline 600 receives input data 601 that is transmitted from
one stage to the next stage of the graphics processing
pipeline 600 to generate output data 602. In one embodi-
ment, the graphics processing pipeline 600 may represent a
graphics processing pipeline defined by the OpenGL® API.
As an option, the graphics processing pipeline 600 may be
implemented in the context of the functionality and archi-
tecture of the previous Figures and/or any subsequent Figure
(s).

As shown in FIG. 6, the graphics processing pipeline 600
comprises a pipeline architecture that includes a number of
stages. The stages include, but are not limited to, a data
assembly stage 610, a vertex shading stage 620, a primitive
assembly stage 630, a geometry shading stage 640, a view-
port scale, cull, and clip (VSCC) stage 650, a rasterization
stage 660, a fragment shading stage 670, and a raster
operations stage 680. In one embodiment, the input data 601
comprises commands that configure the processing units to
implement the stages of the graphics processing pipeline 600
and geometric primitives (e.g., points, lines, triangles,
quads, triangle strips or fans, etc.) to be processed by the
stages. The output data 602 may comprise pixel data (i.e.,
color data) that is copied into a frame buffer or other type of
surface data structure in a memory.

The data assembly stage 610 receives the input data 601
that specifies vertex data for high-order surfaces, primitives,
or the like. The data assembly stage 610 collects the vertex
data in a temporary storage or queue, such as by receiving
a command from the host processor that includes a pointer
to a buffer in memory and reading the vertex data from the
buffer. The vertex data is then transmitted to the vertex
shading stage 620 for processing.

The vertex shading stage 620 processes vertex data by
performing a set of operations (i.e., a vertex shader or a
program) once for each of the vertices. Vertices may be, e.g.,
specified as a 4-coordinate vector (i.e., <X, y, Z, W>) asso-
ciated with one or more vertex attributes (e.g., color, texture
coordinates, surface normal, etc.). The vertex shading stage
620 may manipulate individual vertex attributes such as
position, color, texture coordinates, and the like. In other
words, the vertex shading stage 620 performs operations on
the vertex coordinates or other vertex attributes associated
with a vertex. Such operations commonly including lighting
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operations (i.e., modifying color attributes for a vertex) and
transformation operations (i.e., modifying the coordinate
space for a vertex). For example, vertices may be specified
using coordinates in an object-coordinate space, which are
transformed by multiplying the coordinates by a matrix that
translates the coordinates from the object-coordinate space
into a world space or a normalized-device-coordinate (NCD)
space. The vertex shading stage 620 generates transformed
vertex data that is transmitted to the primitive assembly
stage 630.

The primitive assembly stage 630 collects vertices output
by the vertex shading stage 620 and groups the vertices into
geometric primitives for processing by the geometry shading
stage 640. For example, the primitive assembly stage 630
may be configured to group every three consecutive vertices
as a geometric primitive (i.e., a triangle) for transmission to
the geometry shading stage 640. In some embodiments,
specific vertices may be reused for consecutive geometric
primitives (e.g., two consecutive triangles in a triangle strip
may share two vertices). The primitive assembly stage 630
transmits geometric primitives (i.e., a collection of associ-
ated vertices) to the geometry shading stage 640.

The geometry shading stage 640 processes geometric
primitives by performing a set of operations (i.e., a geometry
shader or program) on the geometric primitives. Tessellation
operations may generate one or more geometric primitives
from each geometric primitive. In other words, the geometry
shading stage 640 may subdivide each geometric primitive
into a finer mesh of two or more geometric primitives for
processing by the rest of the graphics processing pipeline
600. The geometry shading stage 640 transmits geometric
primitives to the viewport SCC stage 650.

In one embodiment, the graphics processing pipeline 600
may operate within a streaming multiprocessor and the
vertex shading stage 620, the primitive assembly stage 630,
the geometry shading stage 640, the fragment shading stage
670, and/or hardware/software associated therewith, may
sequentially perform processing operations. Once the
sequential processing operations are complete, in one
embodiment, the viewport SCC stage 650 may utilize the
data. In one embodiment, primitive data processed by one or
more of the stages in the graphics processing pipeline 600
may be written to a cache (e.g. L1 cache, a vertex cache,
etc.). In this case, in one embodiment, the viewport SCC
stage 650 may access the data in the cache. In one embodi-
ment, the viewport SCC stage 650 and the rasterization stage
660 arc implemented as fixed function circuitry.

The viewport SCC stage 650 performs viewport scaling,
culling, and clipping of the geometric primitives. Each
surface being rendered to is associated with an abstract
camera position. The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene. The viewing
frustum may include a viewing plane, a rear plane, and four
clipping planes. Any geometric primitive entirely outside of
the viewing frustum may be culled (i.e., discarded) because
the geometric primitive will not contribute to the final
rendered scene. Any geometric primitive that is partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (i.e., transformed into a new geo-
metric primitive that is enclosed within the viewing frustum.
Furthermore, geometric primitives may each be scaled based
on a depth of the viewing frustum. All potentially visible
geometric primitives are then transmitted to the rasterization
stage 660.

The rasterization stage 660 converts the 3D geometric
primitives into 2D fragments (e.g. capable of being utilized
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for display, etc.). The rasterization stage 660 may be con-
figured to utilize the vertices of the geometric primitives to
setup a set of plane equations from which various attributes
can be interpolated. The rasterization stage 660 may also
compute a coverage mask for a plurality of pixels that
indicates whether one or more sample locations for the pixel
intercept the geometric primitive. In one embodiment,
z-testing may also be performed to determine if the geo-
metric primitive is occluded by other geometric primitives
that have already been rasterized. The rasterization stage 660
generates fragment data (i.e., interpolated vertex attributes
associated with a particular sample location for each covered
pixel) that are transmitted to the fragment shading stage 670.

The fragment shading stage 670 processes fragment data
by performing a set of operations (i.e., a fragment shader or
a program) on each of the fragments. The fragment shading
stage 670 may generate pixel data (i.e., color values) for the
fragment such as by performing lighting operations or
sampling texture maps using interpolated texture coordi-
nates for the fragment. The fragment shading stage 670
generates pixel data that is transmitted to the raster opera-
tions stage 680.

In one embodiment, the fragment shading stage 670 may
sample a texture map using the texture unit(s) 345 of PPU
200. Texture data 603 may be read from the memory 204 and
sampled using the texture unit 345 hardware. The texture
unit 345 may return a sampled value to the fragment shading
stage 670 to be processed by the fragment shader.

The raster operations stage 680 may perform various
operations on the pixel data such as performing alpha tests,
stencil tests, and blending the pixel data with other pixel data
corresponding to other fragments associated with the pixel.
When the raster operations stage 680 has finished processing
the pixel data (i.e., the output data 602), the pixel data may
be written to a render target such as a frame buffer, a color
buffer, or the like.

It will be appreciated that one or more additional stages
may be included in the graphics processing pipeline 600 in
addition to or in lieu of one or more of the stages described
above. Various implementations of the abstract graphics
processing pipeline may implement different stages. Fur-
thermore, one or more of the stages described above may be
excluded from the graphics processing pipeline in some
embodiments (such as the geometry shading stage 640).
Other types of graphics processing pipelines are contem-
plated as being within the scope of the present disclosure.
Furthermore, any of the stages of the graphics processing
pipeline 600 may be implemented by one or more dedicated
hardware units within a graphics processor such as PPU 200.
Other stages of the graphics processing pipeline 600 may be
implemented by programmable hardware units such as the
SM 340 of the PPU 200.

The graphics processing pipeline 600 may be imple-
mented via an application executed by a host processor, such
as a CPU 550. In one embodiment, a device driver may
implement an application programming interface (API) that
defines various functions that can be utilized by an appli-
cation in order to generate graphical data for display. The
device driver is a software program that includes a plurality
of instructions that control the operation of the PPU 200. The
API provides an abstraction for a programmer that lets a
programmer utilize specialized graphics hardware, such as
the PPU 200, to generate the graphical data without requir-
ing the programmer to utilize the specific instruction set for
the PPU 200. The application may include an API call that
is routed to the device driver for the PPU 200. The device
driver interprets the API call and performs various opera-
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tions to respond to the API call. In some instances, the
device driver may perform operations by executing instruc-
tions on the CPU 550. In other instances, the device driver
may perform operations, at least in part, by launching
operations on the PPU 200 utilizing an input/output interface
between the CPU 550 and the PPU 200. In one embodiment,
the device driver is configured to implement the graphics
processing pipeline 600 utilizing the hardware of the PPU
200.

Various programs may be executed within the PPU 200 in
order to implement the various stages of the graphics
processing pipeline 600. For example, the device driver may
launch a kernel on the PPU 200 to perform the vertex
shading stage 620 on one SM 340 (or multiple SMs 340).
The device driver (or the initial kernel executed by the PPU
200) may also launch other kernels on the PPU 200 to
perform other stages of the graphics processing pipeline
600, such as the geometry shading stage 640 and the
fragment shading stage 670. In addition, some of the stages
of'the graphics processing pipeline 600 may be implemented
on fixed unit hardware such as a rasterizer or a data
assembler implemented within the PPU 200. It will be
appreciated that results from one kernel may be processed
by one or more intervening fixed function hardware units
before being processed by a subsequent kernel on an SM
340.

Foveated Rendering

Even with tremendous advances in graphics hardware,
computational requirements for real-time rendering systems
is keeping pace with or exceeding the advancements in
hardware. Adaption of more realistic lighting and physics-
based shading amplifies shading complexity, while at the
same time, frame rates and resolution of head mounted
displays in VR and AR systems has increased the number of
calculations that need to be performed and compressed those
calculations into shorter and shorter time frames. As a result,
rendering algorithms that can reduce the complexity of the
shading calculations without sacrificing image quality are
becoming more and more important.

Again, human visual acuity radically decreases between
the center of the retina (i.e., the fovea) and the retina’s
periphery. Foveated rendering algorithms exploit this phe-
nomenon to improve performance by decreasing rendering
quality towards the periphery of the retina while maintaining
high fidelity in or near the fovea. Coupled with high-quality
gaze tracking systems, foveated rendering algorithms could
become ubiquitous with high FOV displays targeting higher
resolutions and higher refresh rates.

In order to study the issues with current foveated render-
ing systems, tests using various subjects were performed.
Images rendered at a constant, high resolution were blurred
with a Gaussian filter where the size of the filter increased
based on the distance from a fixation point (i.e., a point in
the image corresponding, roughly, to the center of a viewer’s
fovea). The larger the radius of the Gaussian filter, the worse
the effect of tunnel-vision experienced by the subjects. This
effect is likely caused by the loss of contrast in the viewer’s
peripheral vision. Enhancing contrast in the periphery of the
image, using a post processing technique, enabled a 2x
larger rate of increase in the Gaussian filter size before the
viewer experienced the same sense of tunnel-vision.

Consequently, a foveated rendering system can be created
that generates images at far more aggressive rates of change
in rendering quality from the fixation point to the periphery
than current foveated rendering systems without suffering
from the same undesirable artifacts because the rendered
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images are post-processed with an image-enhancing filter
that increases the contrast of the lower resolution portions of
the image.

FIG. 7 illustrates a foveated rendering system 700, in
accordance with one embodiment. The system 700 includes
a processor 710, a display 720, and one or more sensor(s)
730. The processor 710 may be any conventional type of
general purpose processor, such as a central processing unit
(CPU) having one or more cores, a graphics processing unit
(GPU) having one or more cores, a system-on-chip (SoC)
having one or more CPU cores as well as one or more GPU
cores, or a plurality of processors, including any combina-
tion of CPU or GPU cores in one or more packages coupled
together on a printed circuit board or combined via one or
more interfaces. In one embodiment, the processor 710 is the
PPU 200 described in FIGS. 2 through 4, and the processor
710 may implement, at least in part, the graphics processing
pipeline 600 of FIG. 6. In another embodiment, the proces-
sor 710 is the SoC 500 of FIG. 5.

The display 720 may be any conventional type of display
including, but not limited to, a liquid crystal display (LCD),
a light emitting diode (LED) display, an active matrix
organic light emitting diode (AMOLED) display, a projec-
tion screen and projector, and the like. The display 720
receives video signals from the processor 720 that encode
images for presentation to a viewer. The images encoded by
the video signals are generated by a foveated rendering
algorithm implemented by the processor 710. One or more
sensors 730 are associated with the display 720 to perform
a gaze-tracking function. In one embodiment, each of the
sensor(s) 730 comprises an image sensor that captures an
image of a viewer. The sensor 730 may include hardware for
analyzing the images to determine a fixation point of the
viewer that corresponds with a point of focus of the viewer
on the display 720. The sensor 730 may be configured to
capture images, analyze the images, and transmit a stream of
fixation point coordinates to the processor 710 that are
provided as an input to the foveated rendering algorithm.
Alternatively, the sensor 730 is configured to capture the
images and transmit the images to the processor 710 for
analysis by the processor 710. The processor 710 then
determines the fixation point based on the images.

The processor 710 is configured to receive source image
data for rendering via the foveated rendering algorithm. In
one embodiment, an application, such as a computer graph-
ics application or video game, is executed by a processor and
is configured to generate the source image data for display.
The source image data may comprise three-dimensional
(3D) model data that include a plurality of geometric primi-
tives to be rendered by the graphics processing pipeline 600.
The graphics processing pipeline 600 is modified such that
the rasterization stage 660 and/or the fragment shading stage
670 utilize the fixation point generated by the sensor 730. A
foveated image is generated by the graphics processing
pipeline 600 and then the foveated image is filtered to
enhance the contrast in the periphery of the foveated image.
The filtered image is then encoded into the video signal and
transmitted to the display 720.

It will be appreciated that the display may be a desktop
display or television where the user’s eyes are not located at
a fixed distance from the display. Therefore, the fixation
point may be augmented by a distance of the viewer to the
display. The distance of the viewer and the fixation point
may be used to estimate the size of a fixation region that
corresponds with the user’s fovea. In other words, the
distance of the user from the display determines the FOV
covered by the extents of display, which affects a rate of
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change of the rendering quality as the pixels move from the
fixation point to the periphery of the foveated image. Alter-
natively, instead of a distance of the viewer, the fixation
point may be augmented by a FOV angle that indicates the
FOV of the viewer that matches the extents of the display
720. The FOV increases as the size of the display increases
or as the viewer gets closer to the display and, therefore, the
rate of change in the rendering quality as the pixels move
from the fixation point to the periphery can be adjusted
accordingly.

FIG. 8 illustrates a foveated rendering system 800, in
accordance with one embodiment. The system 800 may be
a head mounted display (HMD) that includes a processor
810, a left eye display 822, one or more left eye sensor(s)
832, a right eye display 824, and one or more right eye
sensor(s) 834. The processor 810 is similar to processor 710,
except that the graphics processing pipeline 600 may be
modified to produce stereoscopic image frames that include
a left eye image and a right eye image. The left eye images
of the stereoscopic image frames are displayed on the left
eye display 822 to be presented to a left eye of the viewer,
and the right eye images of the stereoscopic image frames
are display on the right eye display 824 to be presented to a
right eye of the viewer. In one embodiment, the one or more
left eye sensors 832 perform gaze-tracking of the left eye of
the viewer, transmitting a fixation point of the left eye of the
viewer relative to a location of the left eye image, and the
one or more right eye sensors 834 perform gaze tracking of
the right eye of the viewer, transmitting a fixation point of
the right eye of the viewer relative to a location of the right
eye image.

It will be appreciated that the system 800 is suitable for
VR and AR applications where the displays 822 and 824 are
placed close to the viewer’s eyes such that each eye only
views one of the displays 822 and 824. In such cases, the
distance from the user’s eyes to the displays 822 and 824 is
relatively constant, since the HMD will typically be rested
on the user’s head using a frame resting on the user’s nose
and/or ears or secured to the user’s head with a strap that
surrounds the user’s head. Consequently, the fixation point
transmitted from the sensors 832 and 834 to the processor
810 may not be augmented by a distance to the viewer or a
FOV associated with the viewer because the distance and/or
FOV of each of the displays 822 and 824 may be relatively
constant when the displays 822 and 824 are in use.

FIG. 9 illustrates a foveated rendering algorithm 900, in
accordance with one embodiment. The foveated rendering
algorithm implements coarse pixel shading (CPS) to render
images at variable resolution across the image. The foveated
rendering algorithm may be combined with temporal anti-
aliasing (TAA) techniques in a post-process step to reduce
aliasing artifacts caused by reducing the resolution of the
rendered image in the periphery of the image relative to the
fixation point. Finally, a contrast-enhancing filter (CEF) is
applied to the resolved image generated by the foveated
rendering algorithm to further reduce the effects caused by
the reduced resolution of the image in the periphery.

As shown in FIG. 9, a 3D scene 902 is received at the CPS
shader 910. The 3D scene 902 may comprise fragments
generated by a rasterizer such as the rasterization stage 660
of the graphics processing pipeline 600. The rasterizer
transforms 3D geographic primitives in a world space into
pixel fragments in a screen space (i.e., in a pixel coordinate
space). The rasterizer may utilize z-buffering techniques
(i.e., depth testing) to test the visibility of each triangle in a
filtering step that reduces the amount of shading that is
performed by the CPS shader 910 by culling primitives that
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will not be visible in the final image. It will be appreciated
that the fragments are generated at a fixed resolution that is
decoupled from the local shading rate of the CPS shader 910
for each pixel or pixel tile. For example, the rasterizer may
be configured to evaluate visibility of a triangle at one
sample per pixel (or multiple samples per pixel in the case
of MSAA or SSAA) to generate visibility information for
the triangle corresponding with a number of pixels of a pixel
tile in a final image. However, the CPS shader 910 may
shade fragments at a rate of one color value per pixel, or one
color value for multiple pixels, depending on a pixel loca-
tion, which may be different than the visibility sampling
performed by the rasterizer.

In one embodiment, the CPS shader 910 combines aspects
of coarse pixel shading, as described in Vaidyanathan,
Karthik, et. al., “Coarse Pixel Shading”, High Performance
Graphics, 2014, which is herein incorporated by reference in
its entirety, with mip-mapped texture maps, linear efficient
anti-aliased normal (LEAN) maps, and exponential variance
shadow maps (EVSMs). The material and light shading
techniques implemented by the foveated rendering algo-
rithm address some of the shortcomings of the Coarse Pixel
Shading technique described by Vaidyanathan when applied
to HMDs that have large effective pixel sizes located close
to a user’s eyes that exaggerates image artifacts.

More specifically, visibility information for a tile of pixels
is generated by the rasterizer. The rasterizer may generate a
visibility map that indicates which pixels in a T, xT, sized
pixel tile (e.g., 16x16 pixels) are covered by a particular
geometric primitive, such as a triangle. The CPS shader 910
then shades the covered pixels based on a variable shading
rate. The variable shading rate may be set to one color
sample per pixel, one color sample per 2x2 pixel tile, one
color sample per 4x4 pixel tile, or one color sample per 8x8
pixel tile, and so on. The CPS shader 910 is then run on each
pixel or pixel tile, depending on the shading rate of the tile,
that is covered, at least partially, by the triangle as defined
by the visibility map. The CPS shader 910 utilizes one or
more texture map(s) 904, one or more normal map(s) 906,
and/or one or more shadow map(s) 908 to generate a
sampled color value for the pixel or pixel tile according to
the particular algorithm implemented by the CPS shader
910.

In one embodiment, the CPS shader 910 includes instruc-
tions configured to sample a mip-mapped texture map at a
level-of-detail (LOD) calculated based on, at least in part, a
variable shading rate corresponding with a sample location.
A texture map 904 may be pre-filtered to produce a set of
related texture maps at different resolutions (i.e., LOD), and
then the texture map 904 is sampled at a particular level of
detail based, at least in part, on the variable shading rate.
Mip-mapping is described in more detail in Williams, Lance,
“Pyramidal Parametrics”, SIGGRAPH Comput. Graph., vol.
17, Number 3, 1983, which is herein incorporated by ref-
erence in its entirety.

For example, a base LOD is calculated for sampling the
texture map based on a texel size corresponding with a pixel.
The texel size refers to a texel footprint projected onto the
pixel, which roughly refers to how many texels are covered
per pixel in the current rasterized image space. This can
change depending on the orientation of the texture map on
the surface of the triangle relative to a screen space and/or
the depth of the triangle as projected onto the screen space.
The base LOD is then modified based on the variable
shading rate for the pixel or pixel tile utilized during coarse
pixel shading. For example, the base LOD may be used if the
variable shading rate is one color sample per pixel; the base
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LOD may be incremented by one if the variable shading rate
is one color sample per 2x2 pixel tile; the base LOD may be
incremented by two if the variable shading rate is one color
sample per 4x4 pixel tile; and the base LOD may be
incremented by three if the variable shading rate is one color
sample per 8x8 pixel tile, and so on. The color sample for
the pixel or pixel tile is then generated by sampling the
texture map 904 using texture coordinates for the pixel (or
interpolated from multiple pixels over the pixel tile) at a
particular level of detail in the mip-mapped texture specified
by the modified LOD. In other words, generating a single
color sample for one sample location associated with a
plurality of pixels in a pixel tile may simply be performed by
sampling the pre-filtered texture map at a particular level-
of-detail.

In another embodiment, the CPS shader 910 includes
instructions configured to sample a linear efficient anti-
aliased normal (LEAN) map for calculating lighting effects.
Bump maps or height fields are known in the prior art for
applying texture to a surface such that light simulation is
performed using a non-ideal surface for a geometric primi-
tive (e.g., triangle). LEAN maps are utilized to encode bump
normals projected onto a surface tangent frame and the
second moments of the bump normal for a micro-facet
structure. These values can be used to calculate a diffuse
lighting component and/or a specular lighting component
using known lighting simulation models, such as Blinn-
Phong shading. The LEAN map can be pre-filtered using
mip-mapping techniques since the second moments can be
filtered using any linear filtering kernel. LEAN maps also
enable the combination of multiple bump maps into a single
LEAN map, which can be calculated and mip-mapped prior
to the rendering pass. LEAN maps are described in more
detail in Olano, Marc, et. al., “LEAN Mapping”, Sympo-
sium on Interactive 3D Graphics and Games, 2010, pp.
181-188, which is herein incorporated by reference in its
entirety.

The normal map 906, which is a LEAN map, may be
sampled at various mip-mapped LOD to calculate light
contributions from a lighting effect such as diffuse or specu-
lar lighting effects. In one embodiment, the CPS shader 910
includes instructions configured to sample the normal map
906 to find an average surface normal, projected in a surface
tangent plane, in a particular region corresponding to a
sample location. The average surface normal for the region
is used to calculate a diffuse lighting contribution for the
region. In another embodiment, the CPS shader 910 includes
instructions configured to sample the normal map 906 to
reconstruct a covariance matrix for the bump normal distri-
bution in the region based on the second moments for the
bump normal distribution for the region encoded in the
normal map 906. In yet another embodiment, the CPS
shader 910 includes instructions configured to sample the
normal map 906 to calculate a specular contribution for the
region.

In yet another embodiment, the CPS shader 910 includes
instructions configured to calculate a diffuse lighting com-
ponent of a color value for a sample location using the
normal map 906 and calculate a specular lighting component
of a color value for a sample location using a specular
anti-aliasing (SAA) technique, as described in more detail
below in conjunction with the description for FIGS. 11
through 13. Briefly, the SAA technique includes the steps of
determining a pixel footprint associated with the sample
location, transforming the pixel footprint into a slope
domain region associated with a normal distribution func-
tion, and calculating an expected density of slopes within the
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slope domain region. The expected density of slopes is
utilized to calculate the specular lighting component of the
color value.

In yet another embodiment, the CPS shader 910 includes
instructions configured to sample an exponential variance
shadow map (EVSM) for calculating shadows. EVSMs are
described in more detail in Lauritzen, A., “Rendering
Antialiased Shadows Using Warped Variance Shadow
Maps”, Thesis presented to the University of Waterloo,
2008, which is herein incorporated by reference in its
entirety. The shadow map 908 is an EVSM that encodes the
shadow map for the scene geometry in light space by storing
a distance from light and its second moment. For example,
an EVSM is generated by rendering a depth map for the
scene in a z-only pass based on the light position. While
rendering, each depth sample is transformed into light space
coordinates using a matrix transformation based on a loca-
tion of a light source. Using the depth and its second moment
from the EVSM, and an exponential bias, the amount of
shadow received at a point is determined. Each EVSM
shadow map may incorporate hardware MSAA, mip-map-
ping (i.e., filtering of the full-resolution shadow map to
generate lower resolution shadow maps), and anisotropic
filtering of the shadows to produce soft shadows.

The CPS shader 910 is utilized to generate an image with
variable shading rates across the image, where the shading
rate for a particular region (i.e., pixel or pixel tile) is based
on the angular distance of the region to a fixation point. The
shading rate may be calculated for each region based on a
mapping of distance to FOV angle, which is itself dependent
on the distance of the viewer to the display. In a HMD, this
mapping may be constant as the viewer’s eye is located at an
approximately constant depth from the display. However, in
a desktop display, where the viewer may move relative to the
display, the mapping may be updated based on sensor
feedback.

The resulting foveated image may still include various
artifacts caused by varying the shading rate across the
image. Rather than simply filtering the shading samples in
the shading algorithm, which is partially accomplished using
the techniques outlined above, a post-process anti-aliasing
step is performed to reduce these artifacts. These post-
process steps enable a more aggressive change in shading
rate relative to eccentricity calculated based on the fixation
point, which reduces the computational bandwidth require-
ments of the foveated rendering system while not adversely
affecting perceived image quality.

The post-process anti-aliasing step may include perform-
ing temporal anti-aliasing (TAA) using variance clipping
and clamping (VCC), which may be referred to herein more
generally as variance sampling. Variance sampling is
described in more detail in U.S. patent application Ser. No.
15/452,651 titled “Improved Method for Data Reuse and
Applications to Spatio-Temporal Supersampling and De-
Noising,” filed Mar. 7, 2016, which is herein incorporated by
reference in its entirety. Variance Sampling provides two
major benefits. First, the axis aligned bounding box utilized
for clamping or clipping the resolved color value tends to
naturally exclude outliers, which reduces artifacts like
ghosting that are noticeable even in the periphery of a
foveated image. Second, the raw moments of a color distri-
bution are linear and can be pre-filtered over variable-sized
image regions (e.g., mip-mapping), which enables multi-
scale TAA implementations that can efficiently determine
the statistical properties of large and under-sampled image
regions.
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The TAA algorithm 920 processes the foveated image for
the current frame generated by the CPS shader 910, blending
the image for the current frame with resolved pixel colors
from a previous frame that have been clamped/clipped based
on an AABB generated according to a distribution of color
samples in the current frame. In one embodiment, the TAA
algorithm 920 incorporates an improvement to variance
sampling to account for saccadic eye movement. Eye sac-
cades are rapid eye movements that change the point of
fixation such that the brain can resolve different parts of a
scene using the fovea. In other words, a viewer’s eye will
rapidly move from one point of the scene to another as the
viewer processes the different objects in the scene. Conse-
quently, the fixation point measured by the sensors 730 or
832/834 will move from a first point in the previous frame
to a second point in the current frame. The color information
from the previous frame is combined with color information
from the current frame when utilizing the TAA algorithm
920 and, therefore, it is possible that the fixation point in the
current frame is associated with a location in the periphery
of the previous frame, relative to the fixation point in the
previous frame, such that color information of particular
pixels in the current frame that were rendered at one shading
rate would be blended with color information of correspond-
ing pixels in the previous frame that were rendered at a
different shading rate associated with a blurred portion of the
image in the previous frame. The effect is that the blended
image will slowly come into focus over a number of frames
as the lower resolution color information of the previous
frames is modulated by the high resolution color information
of one or more new frames.

In one embodiment, saccade detection and recovery is
implemented in the TAA algorithm 920. To eliminate focus
lag caused by the variable shading rate across images
blended using the CPS shader 910, the blending rate « is
increased locally to accelerate the rate of convergence in the
region around the fixation point in the current frame. The
value of the blending rate o is given by the following
equations:

& =W + (1 =), (Eq. 1)
s, = St—1 =St (Eq. 2)
Smax
1, ifs >1 (Eq. 3)
w=40, ifS <0
Sy, otherwise
where a.,,,, is the maximum value of the blending rate a.,

and o is an acceleration rate in Equation 1; and S, is the
normalized shading rate for a pixel in the current frame, S, |
is the normalized shading rate for a corresponding pixel in
the previous frame, and S, is a normalized shading ratio
calculated by dividing the difference of the normalized
shading rate for a pixel in the current frame and the
normalized shading rate for a corresponding pixel in the
previous frame by a maximum shading rate S, .. in Equation
2. It will be appreciated that the shading rates may be
normalized to take a value in the range of (0,1], where the
shading rate at the fovea is assigned a value of one and lower
shading rates a take values less than one. For example, the
shading rate at the fovea may be set to a resolution of one
color sample per pixel, which is assigned a normalized
shading rate value of 1. As pixel tiles move into the
periphery of the image, the shading rate may be changed to
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one color sample per 2x2 pixel tile, which is assigned a
value of 0.5. As pixel tiles move even further into the
periphery of the image, the shading rate may be changed to
one color sample per 4x4 pixel tile, which is assigned a
value of 0.25, and so forth. Each shading rate step increases
the size of a corresponding pixel tile for which one color
sample is generated by double in both a horizontal and
vertical direction, and the corresponding normalized shading
rate is reduced by half. In one embodiment, for optimal
results S, 1s set equal to 0.25 and a.,,,,,, 1s set equal to 0.33,
which guarantees a rapid convergence to the correct image
in the area proximate the fixation point. It will be appreci-
ated by evaluating Equation 2 that acceleration the blending
rate o. only occurs when S, | >S,, meaning that the blending
rate is not accelerated when S, | <S,. This is because there is
no need to change the TAA algorithm in the periphery of the
current frame to rapidly blur the image in the periphery
when the corresponding portion of the image in the previous
frame was rendered using a higher relative shading rate.

In one embodiment, the shading rate utilized to render
each pixel may be stored in the frame buffer along with the
color components for the pixel. For example, the shading
rate can be stored in an RGBA format frame buffer, utilizing
the RGB channels to store the color sample information for
the pixel and the alpha channel to store the shading rate. In
another embodiment, the shading rate may be stored in a
separate render target (i.e., data structure) in a memory and
accessed in parallel with the frame buffer storing the color
information for the image. The shading rate information may
be accessed by the TAA algorithm 920 when blending the
current frame with the previous frame.

Finally, once the foveated image for the current frame is
blended with the foveated image for the previous frame, the
resulting blended image is filtered using a contrast-enhanc-
ing filter (CEF) 930. The CEF 930 enhances the contrast in
the blended image to reduce artifacts introduced by the
foveated rendering algorithm. In one embodiment, the CEF
930 is based on a variance interpretation of the contrast and
computes a variance of the local luminance in the periphery
of the image first, followed by scaling the colors to enhance
the variance. An example of a contrast enhancing filter is
described in more detail in Grundland, Mark, et. al., “Cross
Dissolve without Cross Fade: Preserving Contrast, Color
and Salience in Image Compositing”, Computer Graphics
Forum, vol. 25, No. 3, 2006, which is herein incorporated by
reference in its entirety. More specifically, the CEF 930 is a
linear redistribution of colors around a mean of a color
distribution given as:

max

(Eq 4)

where T is a parameter controlling the amount of contrast
enhancement with default t=1; C, is the color of pixel p in
the foveated image; p, is a mean of a color distribution in a
kernel window centered on the pixel p; 0, is a variance of
the color distribution in the kernel window; and C', is the
contrast-enhanced color for the pixel p. In one embodiment,
the variance o, may be replaced by a simplifying constant,
e.g., 1. In another embodiment, the parameter T may be
adjusted based on the shading rate. Consequently, the con-
trast enhancing filter can be applied disproportionately to the
periphery of the image, leaving the portion of the image
proximate the fixation point unfiltered. This helps alleviate
the artifacts introduced in the periphery of the image by the
foveated rendering algorithm while not changing the con-
trast near the fixation point which is rendered using the

C=10,,(Com )+,
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highest resolution shading rate. The CEF 930 generates a
filtered foveated image 904 that is then presented on the
display(s) 720 or 822/824.

FIG. 10 illustrates a flowchart of a method 1000 for
generating a filtered foveated image, in accordance with one
embodiment. It will be appreciated that the method 1000 is
described within the scope of software executed by a pro-
cessor; however, in some embodiments, the method 1000
may be implemented in hardware or some combination of
hardware and software. The method 1000 begins at step
1002, where a 3D scene is received. The 3D scene may
comprise a plurality of geometric primitives associated with
a 3D model. At step 1004, the geometric primitives are
processed by a graphics processing pipeline to generate
visibility information for a plurality of pixel tiles in the
image. Visibility information may be generated at a fixed
rendering rate of N samples per pixel in a T,xT,, sized pixel
tile.

At step 1006, for each pixel tile in the image, the pixel tile
is processed by a CPS shader 910 at a variable shading rate
to generate a foveated image. The variable shading rate is
calculated based on a distance of the pixel tile to a fixation
point in the image. The fixation point may be established
based on sensor feedback from a foveated rendering system
such as system 700 or system 800. The CPS shader 910 may
include instructions configured to sample a mip-mapped
texture map at a LOD calculated based on, at least in part,
a variable shading rate corresponding with a sample loca-
tion. The CPS shader 910 may include instructions config-
ured to sample a linear efficient anti-aliased normal (LEAN)
map for calculating lighting effects. For example, the LEAN
map may be sampled at a LOD to generate an average
surface normal for a region in order to calculate a diffuse
lighting component of a color sample for the region. As
another example, the LEAN map may be sampled at a LOD
to reconstruct a covariance matrix corresponding to a bump
distribution for the region in order to calculate a specular
lighting component of a color sample for the region. Alter-
natively, the specular lighting component of the color
sample may be calculated using the SAA technique.

At step 1008, a mean and variance of a color distribution
for a pixel in the foveated image is calculated. The filter
window may be, e.g., a NxN pixel window that calculates a
mean of the color distribution from all color values in the
filter window and a variance of the color distribution based
on the differences of the color values in the filter window
with the mean of the color distribution in the filter window.
The mean and variance values for each pixel may be stored
in a texture map.

At step 1010, the image for a current frame is blended
with an image for a previous frame in a temporal anti-
aliasing scheme that incorporates a variance sampling tech-
nique. In one embodiment, the variance of the color distri-
bution for a pixel in the foveated image for a current frame
is used to construct an AABB in a color space that is applied
to clamp or clip resolved color samples from a previous
frame during blending of the previous frame with the current
frame. In one embodiment, saccade detection and recovery
is used to accelerate the blending rate in areas proximate the
fixation point for pixels that changed shading rate between
the previous frame and the current frame.

At step 1012, the foveated image is filtered using a
contrast-enhancing filter to generate a filtered foveated
image. The contrast enhancing filter may use the mean and
variance of the color distribution for each pixel to calculate
a contrast enhanced color for the pixel. After step 1012, the
method 1000 terminates.
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FIG. 11 illustrates a micro-facet model for light scattering
simulation, in accordance with one embodiment. Modern
rendering algorithms commonly use micro-facet based sur-
face scattering models as the basis for material appearance.
However, specular aliasing may occur when these models
are under-sampled, and other artifacts may result due to
minification (i.e., when the model of a surface is sub-pixel
sized). Reflection and transmission of light through a surface
can be modeled using a Bidirectional Scattering Distribution
Function (BSDF) which maps how much irradiance of a
light source from a particular incoming direction is scattered
in an outgoing direction. The BSDF depends largely on the
geometry of the underlying surface that is being modeled,
which may be specified as a height field or a plurality of
micro-facet structures (e.g., a distribution of bump normals).
The micro-facet structures may each comprise a surface
having a surface normal in a particular direction. Conse-
quently, a surface can also be modeled as a distribution of
surface normals of the micro-facet structures that make up
the surface. The distribution of surface normals can take the
form of a normal distribution function (NDF) over a given
region, such as a pixel. One common NDF is the Beckman
NDF, which assumes to approximate a height field of
micro-facets having a height distributed according to a
bivariate Gaussian distribution. Another common NDF was
proposed by Trowbridge and Reitz, commonly referred to as
GGX, which corresponds to a distribution of slopes on an
ellipsoid and provides a closer match for some materials.

As shown in FIG. 11, a light source 1 1110 is projected
onto a surface 1120 at point x 1130. The surface 1120 has a
surface normal n 1140. Light from the light source 1110 is
reflected off the surface in various directions based on the
micro-facet model, which assumes that the surface 1120
causes scattering based on the underlying micro-facet struc-
ture of the surface, which is denoted by a distribution of
surface normals. When rendering a scene, the rendering
algorithm is configured to calculate the irradiance of light
scattered from the surface 1120 towards an eye ¢ 1150 (e.g.,
a virtual camera position). The BSDF models the irradiance
based on the direction of the ray from the light source 1110
to the point x 1130 on surface 1120, and the direction of the
ray from the point x 1130 on the surface 1120 to the eye e
1150, and is given as:

F(i, 0)D(m)G(i, 0, m)

0. 0) = (Eq. 5)

where i is a vector from the light source 1110 to the point x
1130, o is a vector from the point x 1130 to the eye e 1150,
function F is a Fresnel term, function D is the NDF of the
normals for the micro-facet structure for the surface, func-
tion G is a masking-shadowing term, n is the surface normal,
and m is a half-way vector between i and 0. The NDF D(m)
is defined as the probability of having a slope direction m in
a slope field defined for a surface patch A, as given by:

(Eq. 6)

where the area of A is defined as a unit value (A=1), by
convention, and dA(m) is the area of all slopes with direc-
tion m. A modification to Equation 6 may be made by using
an alternate notation where the NDF D (b) is defined in a
domain of slopes with:
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_ My

(Eq. 7)

my

where b is a projection of slope m onto a parallel plane 1170
located one unit away from the surface along the normal n
1140. Even though the change of notation requires a corre-
sponding Jacobian matrix to be multiplied by Equation 5, the
Jacobian can be omitted until later to keep notation clear.

Transformation from path space (i, 0) to a half vector
space h is used to simplify filtering of the NDFs. The half
vector h 1160 is used to sample the NDF in a local shading
tangent space and is defined as:

i(x) + o(x)
(%) - (i(x) + 0(x)]”

Bx) = T(x) Ea. 8

where T(x)=(s, t, n) is a matrix formed by the basis vectors
of the orthonormal shading frame at x.

The goal of filtering the NDF is to evaluate the light
transport at point x 1130 for any incident angle of light on
the surface at x 1130 to the eye e 1150. However, when
rendering a pixel, the location of x, and therefore the
corresponding direction of the half vector h 1160, may
change significantly over the pixel footprint. If the rendering
algorithm simply samples a single point x within the pixel
footprint, sources of specular highlight may be missed and
the resulting color calculated for the pixel may be signifi-
cantly off from an expected value. In addition, small changes
over the course of multiple frames may result in flickering
from sampling different points x within the pixel footprint.
Consequently, the calculation of a specular highlight should
be performed by integrating the NDF over the domain of the
pixel footprint, which can be approximated by integrating
over the half-vector space using a first-order Taylor approxi-
mation:

h(x+AX)=h(x)+AxM(x)+o(Ax), (Eq. 9)

In other words, a first-order change in a half-vector domain
can be estimated by the change of point x using a Jacobian
matrix M given as:

Shy  hy (Eq. 10)
M(x):@: % o
dc | oh,  oh,
Sy, 0%,

where *s and *t are the scalar components of a vector along
the corresponding vectors s and t of the orthonormal shading
frame. Techniques for deriving the Jacobian matrix M are
described in more detail in Jakob, Wenzel., “Light Transport
on path-space manifolds”, PhD thesis, Cornell University,
2013, which is herein incorporated by reference in its
entirety. The Jacobian matrix M can be derived from Equa-
tion 8 as:

M(x)=h'(x)=T(x)h",(x)+T(x)h,,(x), (Eq. 11)

where h,, is the half-vector projected onto a parallel plane of
the tangent frame in the world space, as given as the
fractional portion of Equation 8 and T'(x) is a 2x2x2 tensor
derivative of the 2x2 tangent vector T(x).

FIGS. 12A & 12B illustrate a technique for filtering NDFs
for direct lighting simulation, in accordance with one
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embodiment. The NDF of an advanced material, such as a
normal-mapped or displacement-mapped geometry with
complex appearance, may be subject to aliasing when ren-
dered depending on the sampling frequency of the rendering
algorithm applied to that material. Consequently, when
rendering a surface using an NDF-based model, care must be
taken when sampling the surface to avoid aliasing artifacts.
One technique for reducing such aliasing artifacts involves
filtering NDFs for different scales or pixel footprints. This
can be performed efficiently, for variable sized pixel foot-
prints, in a half vector space.

In the general case, in order to compute the incident flux
of light on a pixel reflected off a surface, a light transport
integral can be evaluated. In one embodiment, the light
transport integral is given as:

I=le e ) G (e x)file ) G (43)L, (1, x)dx

where F is the pixel footprint, W (e, x) is the responsivity
of the image sensor in direction ex, G (a, b) is a geometric
term between vertices a and b, L (I, x) is the radiance
emitted from the light source towards Ix, and f, is the BSDF
at point x evaluated with directions o=xe and i=xI. A far field
approximation may be taken that states that the distance
from the object to the eye is much larger than the size of the
pixel footprint and, as a result, the length of i and o can be
approximated as constants in Equation 12. This assumption
allows Equation 11 to be simplified as:

(Eq. 12)

1=C, 5 filex D, (Eq. 13)

where C, is a path constant, which can be estimated to
simplify the integral. Substituting in a BSDF from Equation
1, Equation 13 can be rewritten as:

1=C Jr D(h(x))drx, (Eq. 14)

where h(x) is the half-vector given as a function of point x
in the spherical domain. The integral can be transformed into
the pixel footprint in the slope domain region P as:

dx 1 (Eq. 15)
D(h(x))dx ~ Dh—dh::f—thdh,
ff () L()‘dh‘ 17157 J, P

where dx/dh=M is assumed to be constant, and | P I=[M|| F |
by construction. This approximation is valid within a small
error under the assumption that the mapping from the pixel
footprint F to the slope domain region P is a bijection.
Similar to an NDF, the integral of Equation 15 computes an
effective area of reflective microfacets, except over the
macro region F . It will be appreciated that since the NDF
D does not depend on x, the integral over the pixel footprint
F collapses to the area of F, which can be computed
implicitly during sampling. In other words, we can substitute
the NDF in Equation 14 with a pre-filtered value over the
pixel footprint in the slope domain:

. 1 (Eq. 16)
D®P) = Ep[D(W)] = 7 fp D(h)dh

The pre-filtered value over the pixel footprint in the slope
domain region P 1260 is shown in FIG. 12B. This integral
provides an expected density of micro-facets oriented within
the slope domain region P, which allows shading to be
performed at a single point, while using an NDF that was
filtered over an entire pixel footprint F . Equation 16 can be
interpreted as a convolution with a constant normalized
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kernel Kp=15/IP | (with a support of P shape and a value
of one over the area of P ) and then evaluated at zero as:

D(P = Jp Ko gyDan=Kp D (Eq. 17)

The resulting convolution with an effective NDF kernel is
utilized to approximate the kernel K, to obtain a closed-form
filtering solution for some NDFs.

As shown in FIG. 12A, the pixel footprint F 1220 is
determined for a pixel 1210 using techniques such as
raytracing. In one embodiment, a standard technique, such
as ray differentials, as described in more detail in Igehy,
Homan, “Tracing Ray Differentials”, SIGGRAPH, 1999, pp.
179-186, which is herein incorporated by reference in its
entirety, may be utilized to project the variation of directions
from the pixel 1210 a surface vertex x on a surface 1200.
The variation of directions can be represented as two vec-
tors, Ax,, and Ax, on a tangent plane of the surface corre-
sponding to the horizontal and vertical pixel steps in the uv
image. These differentials are then transformed into half-

vector space based on the Jacobian matrix M, as given by:
Ah,=Ax M
Al =Ax M (Eq. 18)

where Ah,, and Ah, are first-order variations in the slope
domain. The parallelogram in the slope domain region
P given by these two vectors is used to filter high-fre-
quency NDFs.

In order to make filtering NDF's practical, an efficient way
to compute the integral of Equation 16 is needed. Solutions
for solving Equation 16 for two common NDFs, the Beck-
man NDF and the Trowbridge-Reitz NDF, are discussed in
more detail below.

In one embodiment, surfaces are modeled using Beckman
NDFs. The Beckman NDFs are scaled versions of bivariate
Gaussian distributions in the slope domain. Assuming that
the pixel reconstruction filter is a 2D Gaussian filter in image
space with a standard deviation of half a pixel, the vectors
Ah,, and Ah,, represent the vectors of a standard deviation of
the 2D Gaussian distribution tracked from image space into
the slope domain. Equation 17 is utilized to convolve the
two 2D Gaussian distributions in the slope domain by
summing up the covariance matrices of the 2D Gaussians. In
order to obtain a covariance matrix from two standard
deviation vectors, a quadratic matrix form is used to square
the full matrix composed of the two standard deviation
vectors, as given by:

Ahy N Al Y
P~ N an)
Ay N Ak,

Given an anisotropic Beckman NDF with roughness
values o, and o, along tangent axes, the covariance matrix of
the NDF is written as:

a2/2 0
B= ,
0 a?/2

where the roughness parameter a of a Beckman NDF is
related to the standard deviation of a Gaussian distribution
by a®=207. The filtered NDF is then calculated by convolv-
ing the Beckman NDF with the 2D Gaussian image filter
projected into the slope domain. Both distributions are

(Eq. 19)

(Eq. 20)
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Gaussians, so the convolution is another 2D Gaussian with
a covariance matrix B', which is a sum of the covariance
matrices:

B'=B+P (Eq. 21)

In another embodiment, surfaces are modeled using
Trowbridge-Reitz NDFs. The Trowbridge-Reitz NDFs do
not have an elegant closed-form convolution and, therefore,
an ad hoc integration method is used to filter the Trow-
bridge-Reitz NDFs. More specifically, the integral of Equa-
tion 14 can be simplified by circumscribing an axis-aligned
bounding rectangle R around the parallelogram filtering
region with corresponding scalar ranges Ah  and Ah, along
the s and t axes. Consequently, the integral of Equation 16
can be decomposed as:

1 g+ —;I—S ,+%‘—’— (Eq. 22)
D(P)~ D(R) = mﬁ kg f Ay D(s, 1)dsdr,
5= V=t

where integration is performed over an axis-aligned rect-
angle R in s, t and the argument h for the NDF D (h) is
formed out of two scalar values h, and h, in the slope
domain.

FIG. 13 illustrates a flowchart of a method 1300 for
calculating a specular highlight component of a color value
for a sample location, in accordance with one embodiment.
It will be appreciated that the method 1300 is described
within the scope of software executed by a processor;
however, in some embodiments, the method 1300 may be
implemented in hardware or some combination of hardware
and software. The method 1300 begins at step 1302, where
a pixel footprint F associated with a sample location x is
determined. A pixel is defined in a uv image domain, where
u is a horizontal direction in a 2D array of pixels and v is a
vertical direction in the 2D array of pixels. The pixel
footprint F may be specified as two differential vectors Ax,,
and Ax,, that indicate the change in x over a horizontal and
vertical pixel step, respectively. At step 1304, the pixel
footprint F is transformed into a slope domain region
P associated with a normal distribution function D. The
transformation of the pixel footprint may be implemented by
multiplying the differential vectors Ax,, and Ax,, by a Jaco-
bian matrix M as illustrated by Equation 18.

At step 1306, an expected density of slopes within the
slope domain region P is calculated. The expected density
of slopes may be calculated by solving the integral of
Equation 16. In one embodiment, when the NDF is a
Beckman NDF, the integral solution is approximated by
convolving the Beckman NDF with a 2D Gaussian image
filter projected into the slope domain. The vectors Ah,, and
Ah,, represent the vectors of a standard deviation of this 2D
Gaussian distribution projected from the image space into
the slope domain. Convolving the two distributions is per-
formed by summing the covariance matrices for the distri-
butions, as shown in Equations 19 through 21. In another
embodiment, when the NDF is a Trowbridge-Reitz NDF, the
integral solution is approximated by circumscribing an axis-
aligned bounding rectangle R around the parallelogram
formed by the vectors Ah,, and Ah,, and decomposing the
integral from Equation 16 as shown in Equation 22. The
solution to Equation 16 is approximated by solving the
integral of Equation 22 in the rectangle R formed by
vectors Ah, and Ah, where h, and h, are scalar values for the
half-vector h at sample location x.
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FIG. 14 illustrates an exemplary system 1400 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a
system 1400 is provided including at least one central
processor 1401 that is connected to a communication bus
1402. The communication bus 1402 may be implemented
using any suitable protocol, such as PCI (Peripheral Com-
ponent Interconnect), PCI-Express, AGP (Accelerated
Graphics Port), HyperTransport, or any other bus or point-
to-point communication protocol(s). The system 1400 also
includes a main memory 1404. Control logic (software) and
data are stored in the main memory 1404 which may take the
form of random access memory (RAM).

The system 1400 also includes input devices 1412, a
graphics processor 1406, and a display 1408, i.e. a conven-
tional CRT (cathode ray tube), LCD (liquid crystal display),
LED (light emitting diode), plasma display or the like. User
input may be received from the input devices 1412, e.g.,
keyboard, mouse, touchpad, microphone, and the like. In
one embodiment, the graphics processor 1406 may include
a plurality of shader modules, a rasterization module, etc.
Each of the foregoing modules may even be situated on a
single semiconductor platform to form a graphics processing
unit (GPU).

In the present description, a single semiconductor plat-
form may refer to a sole unitary semiconductor-based inte-
grated circuit or chip. It should be noted that the term single
semiconductor platform may also refer to multi-chip mod-
ules with increased connectivity which simulate on-chip
operation, and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple-
mentation. Of course, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user.

The system 1400 may also include a secondary storage
1410. The secondary storage 1410 includes, for example, a
hard disk drive and/or a removable storage drive, represent-
ing a floppy disk drive, a magnetic tape drive, a compact
disk drive, digital versatile disk (DVD) drive, recording
device, universal serial bus (USB) flash memory. The
removable storage drive reads from and/or writes to a
removable storage unit in a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 1404 and/or the
secondary storage 1410. Such computer programs, when
executed, enable the system 1400 to perform various func-
tions. The memory 1404, the storage 1410, and/or any other
storage are possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 1401, the graphics processor
1406, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central proces-
sor 1401 and the graphics processor 1406, a chipset (i.e., a
group of integrated circuits designed to work and sold as a
unit for performing related functions, etc.), and/or any other
integrated circuit for that matter.

Still yet, the architecture and/or functionality of the vari-
ous previous figures may be implemented in the context of
a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired sys-
tem. For example, the system 1400 may take the form of a
desktop computer, laptop computer, server, workstation,
game consoles, embedded system, and/or any other type of
logic. Still yet, the system 1400 may take the form of various
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other devices including, but not limited to a personal digital
assistant (PDA) device, a mobile phone device, a television,
etc.

Further, while not shown, the system 1400 may be
coupled to a network (e.g., a telecommunications network,
local area network (LLAN), wireless network, wide area
network (WAN) such as the Internet, peer-to-peer network,
cable network, or the like) for communication purposes.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:

1. A method, comprising:

receiving a three-dimensional scene;

rendering the 3D scene according to a foveated rendering

algorithm to generate a foveated image; and

filtering the foveated image using a contrast-enhancing

filter to generate a filtered foveated image, wherein the
contrast-enhancing filter comprises, for each pixel p in
the foveated image, calculating a contrast-enhanced
color C',, based on a variance of a color distribution of
at least two color values in a kernel window centered on
the pixel p, and a difference between the color value,
C,, of the pixel p, and a mean of the color distribution
of the at least two color values in the kernel window.

2. The method of claim 1, further comprising displaying
the filtered foveated image on a gaze-tracking display,
wherein the gaze-tracking display includes one or more
sensors for determining a fixation point of a viewer, and
wherein the fixation point is provided as input to the
foveated rendering algorithm.

3. The method of claim 1, wherein the foveated rendering
algorithm is implemented as a coarse pixel shading (CPS)
shader executed by a parallel processing unit.

4. The method of claim 3, wherein the CPS shader
includes instructions configured to sample a mip-mapped
texture map at a level-of-detail (LOD) calculated based on,
at least in part, a variable shading rate corresponding with a
sample location.

5. The method of claim 3, wherein the CPS shader
includes instructions configured to sample a linear efficient
anti-aliased normal (LEAN) map for calculating lighting
effects.

6. The method of claim 3, wherein the CPS shader
includes instructions configured to sample an exponential
variance shadow map (EVSM) for calculating shadows.

7. The method of claim 3, wherein variance sampling is
performed to blend the foveated image for a current frame
with a foveated image for a previous frame prior to the
filtering.

8. The method of claim 1, wherein the contrast-enhanced
color C', for the pixel is computed according to an equation:

C==10,,(Cpm i) 1

where T is a parameter controlling the amount of contrast
enhancement; pu, is the mean of the color distribution;
and o, is the variance of the color distribution.

9. The method of claim 8, wherein the equation is

simplified by replacing the variance o, with a constant.

10. A method, comprising:

receiving a three-dimensional scene; and

rendering the 3D scene according to a foveated rendering
algorithm to generate a foveated image, wherein the
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foveated rendering algorithm is implemented as a

coarse pixel shading (CPS) shader executed by a par-

allel processing unit and the CPS shader includes

instructions configured to calculate a specular lighting

component of a color value for a sample location by:

determining a pixel footprint associated with the
sample location;

transforming the pixel footprint into a slope domain
region associated with a normal distribution func-
tion; and

calculating an expected density of slopes within the
slope domain region.

11. A method, comprising:

receiving a three-dimensional scene; and

rendering the 3D scene according to a foveated rendering

algorithm to generate a foveated image, wherein the
foveated rendering algorithm is implemented as a
coarse pixel shading (CPS) shader executed by a par-
allel processing unit; and

filtering the foveated image using a contrast-enhancing

filter to generate a filtered foveated image, wherein
variance sampling is performed to blend the foveated
image for a current frame with a foveated image for a
previous frame prior to the filtering and the variance
sampling incorporates saccade detection and recovery
to adjust a blending rate.

12. A system, comprising:

a memory; and

a processor coupled to the memory, the processor con-

figured to:

receive a three-dimensional scene,

render the 3D scene according to a foveated rendering
algorithm to generate a foveated image, and

filter the foveated image using a contrast-enhancing
filter to generate a filtered foveated image, wherein
the contrast-enhancing filter comprises, for each
pixel p in the foveated image, calculating a contrast-
enhanced color C', based on a variance of a color
distribution of at least two color values in a kernel
window centered on the pixel p, and a difference
between the color value, C,,, of the pixel p, and a
mean of the color distribution of the at least two
color values in the kernel window.

13. The system of claim 12, the processor further config-
ured to display the filtered foveated image on a gaze-
tracking display, wherein the gaze-tracking display includes
one or more sensors for determining a fixation point of a
viewer, and wherein the fixation point is provided as input
to the foveated rendering algorithm.

14. The system of claim 13, wherein the foveated ren-
dering algorithm is implemented as a coarse pixel shading
(CPS) shader executed by the processor, and wherein the
processor is a parallel processing unit.

15. The system of claim 14, wherein the CPS shader
includes instructions configured to sample a mip-mapped
texture map at a level-of-detail (LOD) calculated based on,
at least in part, a variable shading rate corresponding with a
sample location.

16. The system of claim 14, wherein the CPS shader
includes instructions configured to sample a linear efficient
anti-aliased normal (LEAN) map for calculating lighting
effects.

17. The system of claim 12, wherein the contrast-en-
hanced color C', for the pixel is computed according to an
equation:

C=10,(Com i) s
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where T is a parameter controlling the amount of contrast
enhancement; p, is the mean of the color distribution;
and o, is the variance of the color distribution.
18. The system of claim 17, wherein the equation is
simplified by replacing the variance o, with a constant.
19. A system, comprising:
a memory; and
a processor coupled to the memory, the processor con-
figured to:
receive a three-dimensional scene, and
render the 3D scene according to a foveated rendering
algorithm to generate a foveated image, wherein the
foveated rendering algorithm is implemented as a
coarse pixel shading (CPS) shader executed by the
processor, and wherein the processor is a parallel
processing unit, and the CPS shader includes instruc-
tions configured to calculate a specular lighting
component of a color value for a sample location by:
determining a pixel footprint associated with the
sample location;
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transforming the pixel footprint into a slope domain
region associated with a normal distribution func-
tion; and

calculating an expected density of slopes within the
slope domain region.

20. A non-transitory, computer-readable storage medium
storing instructions that, when executed by a processor,
cause the processor to perform steps comprising:

receiving a three-dimensional scene;

rendering the 3D scene according to a foveated rendering

algorithm to generate a foveated image; and

filtering the foveated image using a contrast-enhancing

filter to generate a filtered foveated image, wherein the
contrast-enhancing filter comprises, for each pixel p in
the foveated image, calculating a contrast-enhanced
color C',, based on a variance of a color distribution of
at least two color values in a kernel window centered on
the pixel p, and a difference between the color value,
C,, of the pixel p, and a mean of the color distribution
of the at least two color values in the kernel window.
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