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SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR COMPUTING
INDIRECT LIGHTING IN A CLOUD
NETWORK

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional
Application No. 61/819,330, filed May 3, 2013, the entire
contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to rendering scenes, and
more particularly to efficiently computing lighting associ-
ated with such scenes.

BACKGROUND

Most computer games and other three-dimensional inter-
active programs have direct lighting that comes directly
from a light source to a viewed surface, which can also
produce the familiar shadows when the light is blocked.
Some advanced video games also include indirect light
(sometimes called bounce light), where the light bounces off
another surface and illuminates the point being viewed. The
reflected light on the bottom of a person’s chin when the sun
is above is an example of indirect light. The computation of
indirect light is generally too expensive for computationally
less powerful devices such as phones, tablets, and weaker
computers. Thus, there is a need for addressing this issue
and/or other issues associated with the prior art.

SUMMARY

A system, method, and computer program product are
provided for computing indirect lighting in a cloud network.
In operation, one or more scenes for rendering are identified.
Further, indirect lighting associated with the one or more
scenes is identified. Additionally, computation associated
with the indirect lighting is performed in a cloud network
utilizing at least one of a voxel-based algorithm, a photon-
based algorithm, or an irradiance-map-based algorithm.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method for computing
indirect lighting in a cloud network, in accordance with one
embodiment.

FIG. 2 illustrates a parallel processing unit (PPU), accord-
ing to one embodiment.

FIG. 3 illustrates the streaming multi-processor of FIG. 2,
according to one embodiment.

FIG. 4A and FIG. 4B illustrate exemplary system flow
diagrams for facilitating the computation of indirect lighting
in a cloud network, in accordance with various embodi-
ments.

FIG. 5 illustrates exemplary mapping of three indirect
lighting algorithms associated with a system for computing
indirect lighting in a cloud network, in accordance with
another embodiment.

FIG. 6 illustrates a flowchart of a method for computing
indirect lighting in a cloud network, in accordance with
another embodiment.

FIG. 7 illustrates a flowchart of a method for computing
indirect lighting in a cloud network, in accordance with
another embodiment.
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FIG. 8 illustrates a flowchart of a method for computing
indirect lighting in a cloud network, in accordance with
another embodiment.

FIG. 9 illustrates a flowchart of a method for computing
indirect lighting utilizing light probes in a cloud network, in
accordance with another embodiment.

FIG. 10 illustrates a flowchart of a method for computing
indirect lighting for fast-moving objects utilizing light
probes in a cloud network, in accordance with another
embodiment.

FIG. 11 illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

DETAILED DESCRIPTION

FIG. 1 illustrates a flowchart of a method 100 for com-
puting indirect lighting in a cloud network, in accordance
with one embodiment. As shown in operation 102, one or
more scenes for rendering are identified. Further, indirect
lighting associated with the one or more scenes is identified,
as shown in operation 104. Additionally, in operation 106, a
computation associated with the indirect lighting is per-
formed in a cloud network utilizing at least one of a
voxel-based algorithm, a photon-based algorithm, or an
irradiance-map based algorithm.

In the context of the present description, a cloud network
refers to any server or collection of servers combined with
some measure of reliability and transparency, allowing a
view of computation much like a utility. In various embodi-
ments, the servers may include local servers and/or remote
servers. Further, indirect lighting refers to light that bounces
off a surface and illuminates a point being viewed. On the
other hand, direct lighting refers to light that comes directly
from a light source to a viewed surface (e.g. which can also
produce the familiar shadows when the light is blocked,
etc.).

The indirect lighting may be identified and/or computed
utilizing a variety of techniques and/or algorithms. For
example, in one embodiment, identifying and computing the
indirect lighting may include utilizing a voxel-based algo-
rithm that includes storing indirect light in a three-dimen-
sional volume as voxels, e.g. represented in a three-dimen-
sional lattice. In this case, in one embodiment, performing
the computation associated with the indirect lighting may
include streaming voxel blocks to reduce latency.

In another embodiment, identifying and computing the
indirect lighting may include utilizing at least one lightmap
that stores radiosity, irradiance, incident radiance, or some
other illumination quantity in buffers mapped over surfaces
by an explicit parameterization. In this case, in one embodi-
ment, indirect light may be stored as textures. Additionally,
in one embodiment, performing the computation associated
with the indirect lighting may include streaming lightmaps
encoded as video (e.g. H.264 video, etc.).

Still yet, in one embodiment, identifying and computing
the indirect lighting may include utilizing light probes. In the
context of the present description, a light probe refers to an
omnidirectional image of the scene from a specific view-
point (e.g. a completely enclosing panorama, etc.). In vari-
ous embodiments, these may be in a regular grid, with depth
maps for assisting in selecting which are visible, manually
placed, or with some other strategy for resolving visibility.

In another embodiment, identifying and computing the
indirect lighting may include propagating photons. In this
case, in one embodiment, the indirect light may be stored as
three-dimensional points. Further, in one embodiment, per-
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forming the computation associated with the indirect light-
ing may include streaming batches of photons to reduce
latency and improve efficiency of photon processing.

In one embodiment, light probes may be utilized as a
targeted indirect light representation specifically for fast-
moving objects. For example, in various embodiments, light
probes for fast-moving objects may be utilized in conjunc-
tion with a voxel-based implementation, a lightmap-based
implementation, and/or a photon-based implementation.

In one embodiment, indirect lighting that is shared
between multiple devices may be computed on a single
shared server. Furthermore, in one embodiment, indirect
lighting that is shared between client devices may be com-
puted on a shared GPU. In this case, each client may have
associated client-specific direct lighting computed on the
cloud network, and final computed images may be sent as
encoded video. In this way, the shared indirect light com-
putation may be amortized. Further, in one embodiment, the
client may compute its own direct lighting and combine it
with indirect lighting received from the cloud (e.g. utilizing
photons and/or lightmaps, etc.).

The client devices may include any type of device, such
as a mobile phone, a tablet computer, a laptop computer, a
desktop computer, a gaming device, and/or any other type of
computing device. In either case, the indirect lighting asso-
ciated with the one or more scenes may be computed in the
cloud network and computed data may be sent to a client to
be used for better quality rendering than the client could
compute outside the cloud.

In one embodiment, the method 100 may further include
storing a result of the computation such that the computation
may be computed once and is capable being utilized mul-
tiple times. Further, in one embodiment, performing the
computation associated with the indirect in the cloud net-
work may include performing the computation asynchro-
nously.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may or may not be implemented,
per the desires of the user. It should be strongly noted that
the following information is set forth for illustrative pur-
poses and should not be construed as limiting in any manner.
Any of the following features may be optionally incorpo-
rated with or without the exclusion of other features
described.

FIG. 2 illustrates a parallel processing unit (PPU) 200,
according to one embodiment. While a parallel processor is
provided herein as an example of the PPU 200, it should be
strongly noted that such processor is set forth for illustrative
purposes only, and any processor may be employed to
supplement and/or substitute for the same. In one embodi-
ment, the PPU 200 comprises X streaming multi-processors
(SMs) 250 and is configured to execute a plurality of threads
concurrently in two or more of the SMs 250(X). A thread
(i.e., a thread of execution) is an instantiation of a set of
instructions executing within a particular SM 250. Each SM
250, described below in more detail in conjunction with
FIG. 3, may include, but is not limited to, one or more
processing cores, one or more load/store units (LSUs), a
level-one (L.1) cache, shared memory, and the like.

In one embodiment, the PPU 200 includes an input/output
(I/O) unit 205 configured to transmit and receive commu-
nications (i.e., commands, data, etc.) from a central process-
ing unit (CPU) (not shown) over the system bus 202. The [/O
unit 205 may implement a Peripheral Component Intercon-
nect Express (PCle) interface for communications over a
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PCle bus. In alternative embodiments, the I/O unit 205 may
implement other types of well-known bus interfaces.

The PPU 200 also includes a host interface unit 210 that
decodes the commands and transmits the commands to the
task management unit 215 or other units of the PPU 200
(e.g., memory interface 280) as the commands may specify.
In one embodiment, the PPU 200 comprises U memory
interfaces 280(U), where each memory interface 280(U) is
connected to a corresponding memory device 204(U). The
host interface unit 210 is configured to route communica-
tions between and among the various logical units of the
PPU 200.

In one embodiment, a program encoded as a command
stream is written to a buffer by the CPU. The buffer is a
region in memory, e.g., memory 204 or system memory, that
is accessible (i.e., read/write) by both the CPU and the PPU
200. The CPU writes the command stream to the buffer and
then transmits a pointer to the start of the command stream
to the PPU 200. The host interface unit 210 provides the task
management unit (IMU) 215 with pointers to one or more
streams. The TMU 215 selects one or more streams and is
configured to organize the selected streams as a pool of
pending grids. In one embodiment, a thread block comprises
32 related threads and a grid is an array of one or more
thread blocks that execute the same stream and the different
thread blocks may exchange data through global memory.
The pool of pending grids may include new grids that have
not yet been selected for execution and grids that have been
partially executed and have been suspended.

A work distribution unit 220 that is coupled between the
TMU 215 and the SMs 250 manages a pool of active grids,
selecting and dispatching active grids for execution by the
SMs 250. Pending grids are transferred to the active grid
pool by the TMU 215 when upending grid is eligible to
execute, i.e., has no unresolved data dependencies. An active
grid is transferred to the pending pool when execution of the
active grid is blocked by a dependency. When execution of
a grid is completed, the grid is removed from the active grid
pool by the work distribution unit 220. In addition to
receiving grids from the host interface unit 210 and the work
distribution unit 220, the TMU 215 also receives grids that
are dynamically generated by the SMs 250 during execution
of a grid. These dynamically generated grids join the other
pending grids in the pending grid pool.

In one embodiment, the CPU executes a driver kernel that
implements an application programming interface (API) that
enables one or more applications executing on the CPU to
schedule operations for execution on the PPU 200. An
application may include instructions (i.e., API calls) that
cause the driver kernel to generate one or more grids for
execution. In one embodiment, the PPU 200 implements a
SIMT (Single-Instruction, Multiple-Thread) architecture
where each thread block (i.e., warp) in a grid is concurrently
executed on a different data set by different threads in the
thread block. The driver kernel defines thread blocks that are
comprised of k related threads, such that threads in the same
thread block may exchange data through shared memory.

In one embodiment, the PPU 200 may include 15 distinct
SMs 250. Each SM 250 is multi-threaded and configured to
execute a plurality of threads (e.g., 32 threads) from a
particular thread block concurrently. Each of the SMs 250 is
connected to a level-two (L.2) cache 265 via a crossbar 260
or other type of interconnect network). The [.2 cache 265 is
connected to one or more memory interfaces 280. Memory
interfaces 280 implement 16, 32, 64, 128-bit data buses, or
the like, for high-speed data transfer. In one embodiment, the
PPU 200 may be connected to up to 6 memory devices 204,
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such as graphics double-data-rate, version 5, synchronous
dynamic random access memory (GDDRS SDRAM).

In one embodiment, the PPU 200 implements a multi-
level memory hierarchy. The memory 204 is located off-chip
in SDRAM coupled to the PPU 200. Data from the memory
204 may be fetched and stored in the [.2 cache 265, which
is located on-chip and is shared between the various SMs
250. In one embodiment, each of the SMs 250 also imple-
ments an .1 cache. The L1 cache is private memory that is
dedicated to a particular SM 250. Each of the L1 caches is
coupled to the shared L.2 cache 265. Data from the [.2 cache
265 may be fetched and stored in each of the [.1 caches for
processing in the functional units of the SMs 250.

In one embodiment, the PPU 200 comprises a graphics
processing unit (GPU). The PPU 200 is configured to
receive commands that specify shader programs for process-
ing graphics data. Graphics data may be defined as a set of
primitives such as points, lines, triangles, quads, triangle
strips, and the like. Typically, a primitive includes data that
specifies a number of vertices for the primitive (e.g., in a
model-space coordinate system) as well as attributes asso-
ciated with each vertex of the primitive. The PPU 200 can
be configured to process the graphics primitives to generate
a frame buffer (i.e., pixel data for each of the pixels of the
display). The driver kernel implements a graphics process-
ing pipeline, such as the graphics processing pipeline
defined by the OpenGL API.

An application writes model data for a scene (ie., a
collection of vertices and attributes) to memory. The model
data defines each of the objects that may be visible on a
display. The application then makes an API call to the driver
kernel that requests the model data to be rendered and
displayed. The driver kernel reads the model data and writes
commands to the buffer to perform one or more operations
to process the model data. The commands may encode
different shader programs including one or more of a vertex
shader, hull shader, geometry shader, pixel shader, etc. For
example, the TMU 215 may configure one or more SMs 250
to execute a vertex shader program that processes a number
of vertices defined by the model data. In one embodiment,
the TMU 215 may configure different SMs 250 to execute
different shader programs concurrently. For example, a first
subset of SMs 250 may be configured to execute a vertex
shader program while a second subset of SMs 250 may be
configured to execute a pixel shader program. The first
subset of SMs 250 processes vertex data to produce pro-
cessed vertex data and writes the processed vertex data to the
L2 cache 265 and/or the memory 204. After the processed
vertex data is rasterized (i.e., transformed from three-dimen-
sional data into two-dimensional data in screen space) to
produce fragment data, the second subset of SMs 250
executes a pixel shader to produce processed fragment data,
which is then blended with other processed fragment data
and written to the frame buffer in memory 204. The vertex
shader program and pixel shader program may execute
concurrently, processing different data from the same scene
in a pipelined fashion until all of the model data for the scene
has been rendered to the frame buffer. Then, the contents of
the frame buffer are transmitted to a display controller for
display on a display device.

The PPU 200 may be included in a desktop computer, a
laptop computer, a tablet computer, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant
(PDA), digital camera, a hand-held electronic device, and
the like. In one embodiment, the PPU 200 is embodied on a
single semiconductor substrate. In another embodiment, the
PPU 200 is included in a system-on-a-chip (SoC) along with
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one or more other logic units such as a reduced instruction
set computer (RISC) CPU, a memory management unit
(MMU), a digital-to-analog converter (DAC), and the like.

In one embodiment, the PPU 200 may be included on a
graphics card that includes one or more memory devices 204
such as GDDRS SDRAM. The graphics card may be con-
figured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 200 may be an integrated graphics processing unit
(iGPU) included in the chipset (i.e., Northbridge) of the
motherboard.

FIG. 3 illustrates the streaming multi-processor 250 of
FIG. 2, according to one embodiment. As shown in FIG. 3,
the SM 250 includes an instruction cache 305, one or more
scheduler units 310, a register file 320, one or more pro-
cessing cores 350, one or more double precision units
(DPUs) 351, one or more special function units (SFUs) 352,
one or more load/store units (LSUs) 353, an interconnect
network 380, a shared memory 370, and one or more texture
unit/L1 caches 390.

As described above, the work distribution unit 220 dis-
patches active grids for execution on one or more SMs 250
of the PPU 200. The scheduler unit 310 receives the grids
from the work distribution unit 220 and manages instruction
scheduling for one or more thread blocks of each active grid.
The scheduler unit 310 schedules threads for execution in
groups of parallel threads, where each group is called a
warp. In one embodiment, each warp includes 32 threads.
The scheduler unit 310 may manage a plurality of different
thread blocks, allocating the thread blocks to warps for
execution and then scheduling instructions from the plurality
of different warps on the various functional units (i.e., cores
350, DPUs 351, SFUs 352, and LSUs 353) during each
clock cycle.

In one embodiment, each scheduler unit 310 includes one
or more instruction dispatch units 315. Each dispatch unit
315 is configured to transmit instructions to one or more of
the functional units. In the embodiment shown in FIG. 3, the
scheduler unit 310 includes two dispatch units 315 that
enable two different instructions from the same warp to be
dispatched during each clock cycle. In alternative embodi-
ments, each scheduler unit 310 may include a single dispatch
unit 315 or additional dispatch units 315.

Each SM 350 includes a register file 320 that provides a
set of registers for the functional units of the SM 350. In one
embodiment, the register file 320 is divided between each of
the functional units such that each functional unit is allo-
cated a dedicated portion of the register file 320. In another
embodiment, the register file 320 is divided between the
different warps being executed by the SM 250. The register
file 320 provides temporary storage for operands connected
to the data paths of the functional units.

Each SM 250 comprises L processing cores 350. In one
embodiment, the SM 250 includes a large number (e.g., 192,
etc.) of distinct processing cores 350. Each core 350 is a
fully-pipelined, single-precision processing unit that
includes a floating point arithmetic logic unit and an integer
arithmetic logic unit. In one embodiment, the floating point
arithmetic logic units implement the IEEE 754-2008 stan-
dard for floating point arithmetic. Each SM 250 also com-
prises M DPUs 351 that implement double-precision float-
ing point arithmetic, N SFUs 352 that perform special
functions (e.g., copy rectangle, pixel blending operations,
and the like), and P LSUs 353 that implement load and store
operations between the shared memory 370 and the register
file 320 via the J texture unit/L1 caches 390 and the
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interconnect network 380. The texture unit/L.1 caches 390
are coupled between the interconnect network 380 and the
shared memory 370 and are also coupled to the crossbar 260.
In one embodiment, the SM 250 includes 64 DPUs 351, 32
SFUs 352, and 32 LSUs 353. In another embodiment, the L1
cache is not included within the texture unit and is instead
included with the shared memory 370 with a separate direct
connection to the crossbar 260.

Each SM 250 includes an interconnect network 380 that
connects each of the functional units to the register file 320
and to the shared memory 370 through the interconnect
network 380. In one embodiment, the interconnect network
380 is a crossbar that can be configured to connect any of the
functional units to any of the registers in the register file 320,
to any of the J texture unit/[.1 caches 390, or the memory
locations in shared memory 370.

In one embodiment, the SM 250 is implemented within a
GPU. In such an embodiment, the SM 250 comprises J
texture unit/L1 caches 390. The texture unit/L1 caches 390
are configured to access texture maps (i.e., a 2D array of
texels) from the memory 204 and sample the texture maps
to produce sampled texture values for use in shader pro-
grams. The texture unit/.1 caches 390 implement texture
operations such as anti-aliasing operations using mip-maps
(i.e., texture maps of varying levels of detail). In one
embodiment, the SM 250 includes 16 texture unit/LL1 caches
390. In one embodiment, the texture unit/L.1 caches 390 may
be configured to receive load and store requests from the
LSUs 353 and to coalesce the texture accesses and the load
and store requests to generate coalesced memory operations
that are output to a memory system that includes the shared
memory 370. The memory system may also include the 1.2
cache 265, memory 204, and a system memory (not shown).

The PPU 200 described above may be configured to
perform highly parallel computations much faster than con-
ventional CPUs. Parallel computing has advantages in
graphics processing, data compression, bioinformatics,
stream processing algorithms, and the like.

In one embodiment, the systems described herein may be
utilized for facilitating the computation of indirect lighting
in a cloud network for interactive display on a client device.

FIG. 4A and FIG. 4B illustrate exemplary system flow
diagrams 400 and 420 for facilitating the computation of
indirect lighting in the cloud, in accordance with various
embodiments. As an option, the system flow diagrams 400
and 420 may be viewed in the context of the previous
Figures and/or any subsequent Figure(s). Of course, how-
ever, the system flow diagrams 400 and 420 may be viewed
in the context of any desired environment. It should also be
noted that the aforementioned definitions may apply during
the present description.

FIG. 4A and FIG. 4B show two variations of indirect light
being computed on the cloud. In FIG. 4A, shared indirect
lighting is computed on a shared GPU and each client has
associated client-specific direct lighting computed on the
cloud, and the final images are sent as encoded video. In
FIG. 4B, only the indirect light is computed on the cloud,
and this is then sent to the client to be used for better quality
rendering than the client could render without the cloud. It
should be noted that the indirect lighting may be computed
on the cloud server once (and if desirable potentially asyn-
chronously) and used by the client.

The computation of indirect light is generally too expen-
sive for weaker clients such as phones, tablets, and weaker
PCs. By computing indirect light on the cloud server and
sending the result to be composed with direct light on the
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client, rich graphics may be realized on lower-power clients.
In various embodiments, different indirect lighting algo-
rithms may be utilized.

For example, in various embodiments, the indirect light-
ing algorithms may include light maps, photon maps, vox-
elized transport, and/or light probes, etc. In one embodi-
ment, these algorithms may be run asynchronously on the
cloud network and thus the direct and indirect light need not
be synchronized. Thus, for example, the indirect lighting
from an object (e.g. a car, etc.) might lag behind the direct
lighting (e.g. which includes the shadow, etc.). It is not
necessarily intuitive that this asynchrony would be visually
acceptable. However, such technique may be implemented
with even relatively large gaps between direct lighting and
indirect lighting (e.g. half a second, etc.). This makes it ideal
for cloud gaming where hard-to-control lag is a key practical
issue.

As noted, cloud-based computation of indirect lighting
may be appropriate for almost any method of computing
indirect lighting. As an example, in one embodiment, the
indirect lighting computation algorithm may include a
voxel-based technique, where the indirect light is stored in
a 3D volume as voxels (e.g. a 3D lattice, etc.). As another
example, the indirect lighting computation algorithm may
include utilizing lightmaps, where the indirect light is stored
as textures (e.g. images, etc.). As yet another example, the
indirect lighting computation algorithm may include utiliz-
ing photons, where the indirect light is stored as 3D points.
In yet another embodiment, the cloud-based computation of
indirect lighting may include utilizing light probes, either for
general indirect lighting computation, or for computing
indirect lighting for fast-moving objects.

Furthermore, in one embodiment, such systems may
compute shared indirect light on the cloud using a shared
server and/or GPU rather than a GPU (or virtual GPU) per
client, as shown in FIG. 4A. Further, in one embodiment, the
system 400 may function to stream voxel blocks to reduce
latency. In another embodiment, the system 420 may func-
tion to stream batches of photons to reduce latency and
improve efficiency of photon processing.

Additionally, in one embodiment, the system 420 may
function to stream (irradiance) lightmaps encoded as H.264
video. In another embodiment, the systems may utilize
H.264 video to compress non-visual data.

Still yet, in one embodiment, the systems 400 and/or 420
may function to predict future lighting conditions by dead
reckoning and physical movement simulation to reduce
latency, such that the client can predict where the lighting
changes will be. Further, in one embodiment, such systems
may implement many-to-many sharing of lighting servers
and direct illumination clients. Moreover, in one embodi-
ment, the systems 400 and/or 420 may function to imple-
ment fading transitions between streamed indirect lighting
data updates.

In one embodiment, the system 400 and/or 420 may be
utilized for computing indirect lighting in a cloud network to
support real-time rendering for interactive 3D applications
on a user’s local device. For example, a traditional graphics
pipeline may be mapped onto a distributed system. This
differs from a single-machine renderer in three fundamental
ways. First, the mapping introduces potential asymmetry
between computational resources available at the cloud
network and local device sides of the pipeline. Second,
compared to a hardware memory bus, the network intro-
duces relatively large latency and low bandwidth between
certain pipeline stages. Third, for multi-user virtual envi-
ronments, a cloud solution can amortize expensive illumi-
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nation computation costs, such as indirect lighting, across
users. In this way, interactive 3D graphics experiences may
be provided that exceed the abilities of a user’s local device
and enable amortization of the resulting rendering costs
when scaling to many clients (e.g. in the context of multi-
player games, etc.).

A conventional single-user interactive renderer may com-
pute and store illumination information, such as indirect
light, into a view-independent data structure, which is que-
ried when rendering each viewpoint. The high cost of
updating indirect light requires a powerful processor. Even
today, relatively few applications compute dynamic global
illumination. In contrast, the cost of rendering the effect of
direct light is more modest. Desktops, laptops, tablets, and
phones can all render basic direct lighting for scenes using
well-known algorithms. With increasing consumer demand
for entertainment on low power devices, splitting computa-
tion for these components between the cloud and user allows
higher quality rendering on a range of client devices.

FIG. 5 illustrates exemplary mapping of three indirect
lighting algorithms associated with a system 500 for com-
puting indirect lighting in a cloud network, in accordance
with another embodiment. As an option, the system 500 may
be viewed in the context of the previous Figures and/or any
subsequent Figure(s). Of course, however, the system 500
may be viewed in the context of any desired environment. It
should also be noted that the aforementioned definitions may
apply during the present description.

FIG. 5 shows the mapping of algorithm pipelines onto
cloud, network, and user resources. As data structure, indi-
rect lighting computation, and lighting reconstruction differ
greatly between the illustrated three algorithms, very differ-
ent mappings to system resources are most suitable. For all
three algorithms illustrated in FIG. 5, indirect lighting is
computed in the cloud. Additionally, all three algorithms
allow amortization of indirect lighting over multiple users.
Further, each algorithm has significantly different user-side
reconstruction costs. Still yet, network requirements vary in
both bandwidth and latency.

FIG. 5 illustrates the shift from cloud (solid-lined boxes)
to local computation (dashed-lined boxes), suggesting use of
different algorithms depending on the targeted user device.

As shown in FIG. 5, the three exemplary lighting algo-
rithms include sparse voxel global illumination, irradiance
maps, and real-time photon mapping. Voxels represent indi-
rect irradiance as a directionally varying, low-dimensional
quantity on a sparse 3D lattice. Reconstructing indirect light
from voxels is relatively inexpensive, though more expen-
sive than from 2D textures.

Grid size may be quite large, preventing transmission of
voxels directly to users. Instead, lighting may be recon-
structed on the cloud and fully-rendered frames are streamed
to users. The resulting multi-resolution representation
allows use of lower resolutions for fast objects or camera
movements and when high quality solutions are not yet
available. With a world-space voxel structure, computation
can be precisely focused to compute indirect light only
where the effect will be visible to some user, and multiple
GPUs inside a server can easily exchange data to collabo-
rate.

Irradiance maps represent indirect irradiance in texture
light maps. Today these textures are typically static, com-
puted offline during authoring. In one embodiment, indirect
light may be gathered at texels interactively on the cloud
using ray tracing. Additionally, geometry may be param-
eterized to allow a mapping of geometry to individual
irradiance map texels. Although commonly done, producing
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a parameterization is laborious and difficult. A client receiv-
ing irradiance maps must only decode transmitted H.264
data and combine with locally-computed direct lighting, so
relatively weak user hardware suffices. As maps may be
broadcast to multiple users, the computation is amortized.
Incrementally adding multi-bounce lighting is straightfor-
ward by gathering from the prior frame’s irradiance maps.

Photons represent indirect light as point sampled par-
ticles. As photons may have independent lifetimes, intelli-
gent management allows reuse between frames and multiple
users. This also allows parallelization over multiple cloud
GPUs and the ability to progressively update photons in
batches for a more immediate response to changing lighting.
Client light reconstruction is relatively expensive, requiring
recent GPUs for interactivity. However, photons put few
demands on scene authoring, requiring neither parameter-
ization nor voxelization. Using photons offers a tradeoff
requiring higher client hardware computation in exchange
for high image quality and reduced authoring costs.

It should be noted that performing reconstruction on the
cloud and sending final rendered frames, as in our exemplary
sparse voxel global illumination example, supports any
client that decodes video and relies on client bandwidths and
latencies on par with currently popular network services, but
authoring pipelines must change to handle voxel-based
lighting, and the benefits of decoupling indirect illumination
and user frame-rate may not be not realized, Irradiance maps
support relatively low-powered devices, can update indirect
light asynchronously, use bandwidth comparable to stream-
ing video, and easily incorporate into existing engines using
light maps. However progressive irradiance map updates are
tricky, and parameterizing complex scenes is challenging.
Photons refine lighting progressively and asynchronously to
easily handle dynamic scenes and are straightforward to add
to existing rendering systems. However, photons require a
capable client device and consume significantly higher
bandwidth than our other approaches.

FIG. 6 illustrates a flowchart of a method 600 for com-
puting indirect lighting in a cloud network, in accordance
with another embodiment. As an option, the method 600
may be viewed in the context of the previous Figures and/or
any subsequent Figure(s). Of course, however, the method
600 may be viewed in the context of any desired environ-
ment. It should also be noted that the aforementioned
definitions may apply during the present description.

As shown, the method 600 illustrates a voxel global
illumination approach, in accordance with one embodiment.
As shown in operation 602, scene geometry is voxelized
(either offline or dynamically). Light is then injected and the
sparse voxel grid is filtered, as shown in operation 604. As
shown in operation 606, cones are traced through a grid to
propagate lighting.

Further, in operation 608, cone traced results are used to
generate fully-illuminated frames. As shown in operation
610, each frame is encoded with H.264 (or another appro-
priate encoding) and is sent to an appropriate client. Addi-
tionally, in operation 612, H.264 encoded data is decoded on
the client and the frame is displayed.

This particular voxel global illumination approach builds
on sparse-octree global illumination, and can be thought of
as a multi-resolution octree irradiance cache or a 3D light
map. More information associated with sparse-octree global
illumination may be found in “Interactive indirect illumina-
tion using voxel cone tracing” (CRASSIN, C., NEYRET, F.,
SAINZ, M., GREEN, S., AND EISEMANN, E. 2011,
Computer Graphics Forum 30, 7), which is hereby incor-
porated by reference in its entirety.
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Using this approach avoids constructing surface param-
eterizations. On the cloud, indirect light is gathered to a
directionally varying irradiance sample at every multi-reso-
Iution voxel. To reconstruct indirect light, cones may be
traced through this voxel grid to generate view-dependent
indirect light for each client. This view-dependent recon-
struction also occurs in the cloud, though it uses a separate
GPU from the per-voxel sampling.

Basic voxel lighting runs well on high-end PCs. While
view independent, the light injection and propagation steps
require substantial resources. To ensure computations amor-
tize well over many clients, light may be propagated via
cone tracing to a view independent, per-voxel representa-
tion, rather than a per-pixel output. After cone tracing,
querying the resulting view-independent voxel irradiance
cache occurs quite efficiently. However, shipping a large
voxel grid over the network for client reconstruction is
generally infeasible. Instead, the voxels may be transferred
to another cloud GPU to reconstruct, compress, and send
fully rendered frames to clients.

In one embodiment, the voxel algorithm may use one
GPU (called the global illumination GPU) to generate
view-independent data plus a smaller GPU (called the final
frame GPU) to generate the view-dependent frames to send
to clients. To utilize fast GPU-to-GPU transfers, in one
embodiment, the global illumination and final frame GPUs
may reside in a single server. However, the significant data
size of a voxel representation may still require several other
strategies to compress data for efficient transfer.

For example, in one embodiment, voxels may be bricked,
with per-brick compaction. As another example, wavelet
voxel encoding may be implemented for finer octree levels.
Further, in one embodiment, GPU-to-GPU transfers may be
restricted to a minimal octree cut.

In another embodiment, asynchronous updates may be
performed with DMA transfers between GPUs. Addition-
ally, progressive, frequency-dependent decompression may
be implemented. Essentially, the system may speed transfers
by reducing the amount and precision of voxel data, limiting
transmissions to important voxels, and using asynchronous
communication. Further, the system may speed reconstruc-
tion (and further reduce bandwidth) by computing full
resolution only in areas requiring high frequency detail. In
one embodiment, in the context of synchronous updates,
computations may appear synchronous to a client, but occur
asynchronously on two GPUs in the cloud.

In another embodiment, an irradiance map-based algo-
rithm may be utilized to seamlessly fit into existing engines
with directional light map illumination (e.g. Unreal Engine
3 and the Source Engine, etc.). Existing systems typically
use static, offline “prebaked” irradiance maps. In one
embodiment, the local device renderer may be left unmodi-
fied but the system may be extended to stream dynamic
textures for the illumination data. This keeps the client
simple, as the only new logic for dynamic indirect light is a
network decoder to interpret incoming irradiance maps.

As long as the server outputs compressed irradiance maps
with the required performance, it can use any baking algo-
rithm. In one embodiment, two irradiance map servers may
be implemented. One server may function to gather irradi-
ance naively at each texel using a ray tracing-based ray
tracer.

In one embodiment, the second server may be a more
sophisticated and efficient server, and may first decomposes
the irradiance map into coarse basis functions, and may only
gather illumination once per basis. This approach requires an
order of magnitude fewer rays for comparable performance,
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accelerating computation sufficiently to allow multiple
updates of the entire irradiance map per second. In both
cases, irradiance maps may be compressed using a hardware
H.264 encoder prior to transmission and decompressed
client-side with an optimized decoder (e.g. a CUDA
decoder, etc.).

FIG. 7 illustrates a flowchart of a method 700 for com-
puting indirect lighting in a cloud network, in accordance
with another embodiment. As an option, the method 700
may be viewed in the context of the previous Figures and/or
any subsequent Figure(s). Of course, however, the method
700 may be viewed in the context of any desired environ-
ment. It should also be noted that the aforementioned
definitions may apply during the present description.

As shown, the method 700 illustrates an irradiance map
global illumination approach, in accordance with one
embodiment. In operation 702, global unique texture param-
eterization is generated (e.g. offline, etc.). In operation 704,
texels are clustered into basis functions (e.g. offline, etc.).
Further, indirect light is gathered at each basis function (or
texel), as shown in operation 706.

Additionally, per-texel irradiance is reconstructed from
basis functions, as shown in operation 708. As shown in
operation 710, irradiance maps are encoded to H.264 and
transmitted to a client. The irradiance maps are decoded on
the client, as shown in operation 712. Furthermore, direct
light is rendered and the irradiance maps are used for
indirect light, as shown in 714.

In this case, at every iteration, a texture-space deferred
shading pass is performed over the irradiance map (e.g.
using a texture space G-buffer and current irradiance maps
as input, etc.). In one embodiment, ray tracing may be
utilized to perform a gather of indirect light, either at every
valid texel or once per basis function. Further, a rasterizer
may be used to offload computation of direct light in texture
space, improving performance. In some cases, using clus-
tered bases may significantly reduce the number of gather
points. As a preprocess, in one embodiment, mutually vis-
ible texels may be clustered (e.g. not separated by walls, etc)
with similar normals. Each basis has a radius of influence,
and when gathering at basis functions, in one embodiment,
up to eight bases may be blended to reconstruct per-texel
irradiance.

Each irradiance map update gathers a single bounce of
indirect light. Multi-bounce lighting may be achieved by
consulting the prior irradiance map when gathering subse-
quent irradiance maps. In various embodiments, high
memory coherency for rays traced in parallel may be sought
by reordering hemispherical QMC samples into clusters of
coherent rays, tracing clustered rays in parallel rather than
sequentially, and/or avoiding complex materials during irra-
diance map creation.

To eliminate popping due to sudden illumination changes
or unexpected network latency, client-side temporal filtering
can be achieved using an exponentially weighted average
over multiple irradiance maps. In one embodiment, for
asynchronous updates, new irradiance maps may be com-
puted asynchronously, incorporated on a client as they
arrive.

For a photon-based indirect lighting algorithm implemen-
tation, in one embodiment, a standard photon tracer may be
implemented (e.g. via a Cloud-based ray tracing engine,
etc.). In one embodiment, the photons may be compacted
and compressed for transmission to the clients, which then
render indirect illumination from them via a screen-space
scatter approach, rather than a traditional final gather. To
produce timely updates, photons may be continually traced
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in small batches and transmitted soon as they are complete,
rather than waiting for all photons in the scene. This allows
convergence in time, similar to frameless rendering or
real-time path tracing approaches. Because indirect light
often changes gradually (in world space), in many cases the
artifacts resulting from this are hard to perceive while the
short update time between a scene change and new illumi-
nation being sent to the client is always beneficial.

FIG. 8 illustrates a flowchart of a method 800 for com-
puting indirect lighting in a cloud network, in accordance
with another embodiment. As an option, the method 800
may be viewed in the context of the previous Figures and/or
any subsequent Figure(s). Of course, however, the method
800 may be viewed in the context of any desired environ-
ment. It should also be noted that the aforementioned
definitions may apply during the present description.

As shown, the method 800 illustrates a photon map global
illumination approach, in accordance with one embodiment.
As shown in operation 802, photons may be traced using
cloud-based ray tracer. In operation 804, bit-packed encod-
ing of photons may be transferred to clients. As shown in
operation 806, old photon packets are expired on the client
and the photon packets are replaced with new photon
packets. Further, photons are scattered into client view to
accumulate indirect light, as shown in operation 808. As
shown in operation 810, indirect light is summed with
locally-computed direct illumination.

One feature of this exemplary pipeline is photon botching.
A global parameter controls photon count per emitted watt
of illumination, which sets total photons per iteration. These
are grouped into fixed sized batches, with all photons in each
batch emitted from one light.

To ensure full GPU utilization and to avoid noise for dim
lights, additional photons are added (and renormalized so
each light emits an integer number of batches. Each photon
stores direction, power, position, radius, and normalization
factors (e.g. packed into a 20-byte structure, etc.). In one
embodiment, normalization may be deferred to the client to
preserve precision. This precision could be ignored to regain
some network bandwidth.

Batching has many advantages. Common ray origins and
directions dramatically improve memory coherence (and
performance) when traversing ray acceleration structures.
Tracing and transmitting small batches reduces latency
between interaction and first visible change. Fixed batch
sizes simplify memory allocations and transfers at multiple
stages in the pipeline. When lighting changes, identifying
stale photons is straightforward, as batches directly corre-
spond to specific lights. Only photons whose corresponding
light changed are reshot. For dynamic geometry, only pho-
ton batches that interact with this geometry need updating.

Once photons reach the client, in one embodiment, an
image-space splatting approach may be used to gather
indirect light (e.g. a 2.5 D bounds method, etc.). This uses
a deferred render pass, which expands photons to a polygo-
nal approximation of their area of influence. A photon
density estimation kernel runs over all covered pixels, with
results output to a low resolution additive accumulation
buffer. In one embodiment, a bilateral upsample may be
applied to get a full-resolution indirect illumination buffer.

In one embodiment, light probes may be utilized to
compute indirect lighting for fast-moving objects and may
be used in conjunction the methods described in FIGS. 6-9
(e.g. see FIG. 10). In another embodiment, light probes may
be utilized to calculate indirect lighting on the cloud net-
work.
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FIG. 9 illustrates a flowchart of a method 900 for com-
puting indirect lighting utilizing light probes in a cloud
network, in accordance with another embodiment. As an
option, the method 900 may be viewed in the context of the
previous Figures and/or any subsequent Figure(s). Of
course, however, the method 900 may be viewed in the
context of any desired environment. It should also be noted
that the aforementioned definitions may apply during the
present description.

As shown in operation 902, on a cloud network, a
plurality of light probes are rendered at predetermined
locations. Further, as shown in operation 904, blurred varia-
tions of the light probes are computed by converting them to
a spherical harmonic (SH) representation and convolving
them with varying shading lobes. In operation 906, the light
probes are packed into one or more image buffers and
compressed using a natural-image video codec (e.g. H.264,
etc.).

As shown in operation 908, the light probe video(s) is sent
to the client. Additionally, as shown in operation 910, light
probe video is decoded on the client into a texture map and
a standard irradiance environment map shading technique(s)
is applied.

FIG. 10 illustrates a flowchart of a method 1000 for
computing indirect lighting for fast-moving objects utilizing
light probes in a cloud network, in accordance with another
embodiment. As an option, the method 1000 may be viewed
in the context of the previous Figures and/or any subsequent
Figure(s). Of course, however, the method 1000 may be
viewed in the context of any desired environment. It should
also be noted that the aforementioned definitions may apply
during the present description.

As shown in operation 1002, on a cloud network, only one
light probe is computed (e.g. using the method described in
FIG. 9, etc.) per moving object. In one embodiment, this
light probe may be placed at a location where the moving
object is anticipated to appear soon, for example, a few
meters ahead of the object along its current velocity vector
or known motion curve.

As shown in operation 1004, the resulting data is packed,
compressed, and streamed to the client. On the client, two
light probes are retained per object, as shown in operation
1006. In one embodiment, a first of the two light probes may
be the closest light probe to the object’s current location that
was previously received from the server. Additionally, in one
embodiment, a second of the two light probes may be the
farthest light probe yet received from the server along the
object’s motion. As shown in operation 1008, when shading
a moving object, illumination is interpolated between that
depicted by the light probe closest to it and the farthest
anticipated light probe along the motion vector, using the
distance between these as the interpolation parameter.

FIG. 11 illustrates an exemplary system 1100 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a
system 1100 is provided including at least one central
processor 1101 that is connected to a communication bus
1102. The communication bus 1102 may be implemented
using any suitable protocol, such as PCI (Peripheral Com-
ponent Interconnect), PCI-Express, AGP (Accelerated
Graphics Port), HyperTransport, or any other bus or point-
to-point communication protocol(s). The system 1100 also
includes a main memory 1104. Control logic (software) and
data are stored in the main memory 1104 which may take the
form of random access memory (RAM).

The system 1100 also includes input devices 1112, a
graphics processor 1106, and a display 1108, i.e. a conven-
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tional CRT (cathode ray tube), LCD (liquid crystal display),
LED (light emitting diode), plasma display or the like. User
input may be received from the input devices 1112, e.g.,
keyboard, mouse, touchpad, microphone, and the like. In
one embodiment, the graphics processor 1106 may include
a plurality of shader modules, a rasterization module, etc.
Each of the foregoing modules may even be situated on a
single semiconductor platform to form a graphics processing
unit (GPU).

In the present description, a single semiconductor plat-
form may refer to a sole unitary semiconductor-based inte-
grated circuit or chip. It should be noted that the term single
semiconductor platform may also refer to multi-chip mod-
ules with increased connectivity which simulate on-chip
operation, and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple-
mentation. Of course, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user.

The system 1100 may also include a secondary storage
1110. The secondary storage 1110 includes, for example, a
hard disk drive and/or removable storage drive, representing
a floppy disk drive, a magnetic tape drive, a compact disk
drive, digital versatile disk (DVD) drive, recording device,
universal serial bus (USB) flash memory. The removable
storage drive reads from and/or writes to a removable
storage unit in a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 1104 and/or the
secondary storage 1110. Such computer programs, when
executed, enable the system 1100 to perform various func-
tions. For example, a compiler program that is configured to
examine a shader program and enable or disable attribute
buffer combining may be stored in the main memory 1104.
The compiler program may be executed by the central
processor 1101 or the graphics processor 1106. The main
memory 1104, the storage 1110, and/or any other storage are
possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 1101, the graphics processor
1106, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central proces-
sor 1101 and the graphics processor 1106, a chipset (i.e., a
group of integrated circuits designed to work and sold as a
unit for performing related functions, etc.), and/or any other
integrated circuit for that matter.

Still yet, the architecture and/or functionality of the vari-
ous previous figures may be implemented in the context of
a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired sys-
tem. For example, the system 1100 may take the form of a
desktop computer, laptop computer, server, workstation,
game consoles, embedded system, and/or any other type of
logic. Still yet, the system 1100 may take the form of various
other devices including, but not limited to a personal digital
assistant (PDA) device, a mobile phone device, a television,
etc.

Further, while not shown, the system 1100 may be
coupled to a network (e.g., a telecommunications network,
local area network (LLAN), wireless network, wide area
network (WAN) such as the Internet, peer-to-peer network,
cable network, or the like) for communication purposes.

More information associated with computing indirect
lighting in a cloud environment may be found in “Cloud-
Light: A system for amortizing indirect lighting in real-time
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rendering,” (Cyril Crassin, David Luebke, Michael Mara,
Morgan McGuire, Brent Oster, Peter Shirley, Peter-Pike
Sloan, Chris Wyman; NVIDIA Technical Report NVR-
2013-001, July 2013; site: http:/graphics.cs.williams.edu/
papers/CloudLight13/Crassin13Cloud.pdf), which is hereby
incorporated by reference in its entirety.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:

1. A method, including:

identifying at a cloud network including a server com-

puter one or more scenes to be rendered at a client
device;

identifying at the server computer of the cloud network

indirect lighting associated with the one or more
scenes; and

performing at the server computer of the cloud network a

computation of the indirect lighting utilizing

voxels representing indirect irradiance for the one or
more scenes as a directionally varying, low-dimen-
sional quantity in a sparse hierarchical spatial parti-
tion; and

sending data associated with the computation from the

server computer of the cloud network to the client
device to be used for rendering at the client device,
including streaming the voxels to the client device for
decoding thereof and use in rendering the one or more
scenes.

2. The method of claim 1, wherein the data associated
with the computation is shared between two or more client
devices that include the client device to which the data
associated with the computation is sent.

3. The method of claim 1, wherein performing the com-
putation of the indirect lighting associated with the one or
more scenes includes performing the computation asynchro-
nously.

4. The method of claim 1, further comprising causing
amortization of the indirect lighting over multiple client
devices.

5. The method of claim 1, wherein the sparse hierarchical
spatial partition is a sparse octree.

6. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor,
cause the processor to perform steps comprising:

identifying at a cloud network including a server com-

puter one or more scenes to be rendered at a client
device;

identifying at the server computer of the cloud network

indirect lighting associated with the one or more
scenes; and

performing at the server computer of the cloud network a

computation of the indirect lighting utilizing

voxels representing indirect irradiance for the one or
more scenes as a directionally varying, low-dimen-
sional quantity in a sparse hierarchical spatial parti-
tion; and

sending data associated with the computation from the

server computer of the cloud network to the client
device to be used for rendering at the client device,
including streaming the voxels to the client device for
decoding thereof and use in rendering the one or more
scenes.
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7. A server computer in a cloud network comprising:
a memory system; and
one or more processing cores coupled to the memory
system and that are each configured for:
identifying one or more scenes to be rendered at a client
device;
identifying indirect lighting associated with the one or
more scenes; and
performing a computation of the indirect lighting utilizing
voxels representing indirect irradiance for the one or
more scenes as a directionally varying, low-dimen-
sional quantity in a sparse hierarchical spatial parti-
tion; and
sending data associated with the computation to the client
device to be used for rendering at the client device,
including streaming the voxels to the client device for
decoding thereof and use in rendering the one or more
scenes.
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