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Improved Alpha Testing Using Hashed Sampling
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Abstract—
We further describe and analyze the idea of hashed alpha testing from Wyman and McGuire [1], which builds on stochastic alpha
testing and simplifies stochastic transparency. Typically, alpha testing provides a simple mechanism to mask out complex silhouettes
using simple proxy geometry with applied alpha textures. While widely used, alpha testing has a long-standing problem: geometry can
disappear entirely as alpha mapped polygons recede with distance. As foveated rendering for virtual reality spreads, this problem
worsens as peripheral minification and prefiltering introduce this problem on nearby objects.

We first introduce the notion of stochastic alpha testing, which replaces a fixed alpha threshold of ατ = 0.5 with a randomly chosen
ατ ∈ [0..1). This entirely avoids the problem of disappearing alpha-tested geometry, but introduces temporal noise.

Hashed alpha testing uses a hash function to choose ατ procedurally. With a good hash function and inputs, hashed alpha testing
maintains distant geometry without introducing more temporal flicker than traditional alpha testing. We also describe how hashed alpha
interacts with temporal antialiasing and applies to alpha-to-coverage and screen-door transparency. Because hashed alpha testing
addresses alpha test aliasing by introducing stable sampling, it has implications in other domains where increased sample stability is
desirable. We show how our hashed sampling might apply to other stochastic effects.

Index Terms—anisotropy, alpha map, alpha test, hash, hashed alpha test, stable shading, stochastic sampling.
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1 INTRODUCTION

FOR decades interactive renderers have used alpha test-
ing, discarding fragments whose alpha falls below a

specified threshold ατ . While not suitable for transparent
surfaces, which require alpha compositing [2] and order-
independent transparency [3], alpha testing provides a
cheap way to render binary visibility stored in an alpha
map. Alpha testing is particularly common in engines using
deferred rendering [4] or complex post-processing, as it pro-
vides a correct and consistent depth buffer for subsequent
passes. Today, games widely alpha test for foliage, fences,
decals, and other small-scale details.

But alpha testing introduces artifacts. Its binary queries
alias on alpha boundaries, where α≈ατ . Because this occurs
in texture space, geometric antialiasing is ineffective and
only postprocess antialiasing addresses these artifacts (e.g.,
Karis [5], Lottes [6], and Yang et al. [7]). Texture prefiltering
fails since a post-filter alpha test still gives binary results.

Less well-known, alpha mapped geometry can disap-
pear in the distance, as shown in Figure 1. Largely ignored
in academic contexts, game developers frequently encounter
this problem (e.g., Castano [8]). Some scene-specific tuning
and restrictions on content creation reduce the problem, but
none completely solve it.

To solve both problems, we propose replacing the fixed
alpha threshold, ατ , with a stochastic threshold chosen
uniformly in [0..1), i.e., we replace:

if ( color.a < ατ ) discard;

with a stochastic test:

• C. Wyman is with NVIDIA Corporation in Redmond, WA.
E-mail: chris.wyman@acm.org

• M. McGuire is with NVIDIA Corporation and Williams College.

Manuscript received ???; revised ???.

if ( color.a < drand48() ) discard;

This adds high-frequency spatial and temporal noise, so
we propose a hashed alpha test with similar properties but
stable behavior, i.e., using:

if ( color.a < hash( . . . ) ) discard;

Hashing techniques have many graphics applications, rang-
ing from packing sparse data [9] to visualizing big data [10].
However, we present the first application of hash functions
that enables controllable stability of stochastic samples. In
particular, this paper makes the following contributions:

• we introduce the idea of stochastic alpha testing, which
simplifies stochastic transparency [11] but maintains
the expected value of geometric coverage at all view-
ing distances;

• we show hashed alpha testing provides similar benefits
and, with well-selected hash inputs, provides spatial
and temporal stability comparable to traditional al-
pha testing;

• we introduce an anisotropic variant of hashed alpha
testing that retains these properties even for surfaces
viewed at grazing angles; and

• we demonstrate how to robustly incorporate hashed
alpha testing into modern rendering engines, includ-
ing those using temporal antialiasing, multisample
alpha-to-coverage, or screen-door transparency.

We also provide insight into how our new stable, hash-based
sampling scheme might apply in other stochastic sampling
contexts where stable sampling may be desirable.

2 WHY DOES GEOMETRY DISAPPEAR?
Disappearing alpha-tested geometry is poorly covered in
academic literature. However, game developers repeatedly
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(a) Traditonal alpha test (b) Alpha-to-coverage (c) Hashed alpha test (d) Hashed alpha-to-coverage

Fig. 1: Hashed alpha testing avoids disappearing alpha-mapped geometry and reduces correlations in multisample alpha-to-
coverage. We compare a bearded man rendered with alpha testing, alpha-to-coverage, hashed alpha testing, and hashed
alpha-to-coverage. Insets show the same geometry from further away, enlarged to better depict variations.

Fig. 2: Coarse texels average alpha over finer mipmapped
texels. The hair in Figure 1 has an average alpha αavg =0.32,
partly due to artist-added padding. Accessing coarse mip
levels for alpha thresholding gives many samples close to
αavg, causing most fragments to fail the alpha test.

Fig. 3: When nearby, each metal wire in this fence is 5 pixels
wide (left). With distance, alpha testing discretely erodes
pixel coverage along edges so the wire thins to roughly one
pixel (center). Further away wires no longer cover even one
pixel, disappearing entirely (right).

encounter this issue. Castano [8] investigates the causes and
describes prior ad hoc solutions. Three issues contribute to
loss of coverage in alpha-tested geometry:

Reduced alpha variance. Mipmap construction itera-
tively box filters the alpha channel, reducing alpha variance
in coarser mipmap levels. At the coarsest level of detail
(lod), a single texel averages alpha, αavg, over the base
texture. Many textures contain αavg � ατ , causing more
failed alpha tests in coarser lods, especially if the texture
contains padding (see Figure 2). Essentially, a decreasing
percentage of texels pass the alpha test in coarser mips.

(a) (b) (c) (d)
Fig. 4: Hashed alpha testing (b) maintains coverage better
than regular alpha testing (a), but it still loses some coverage
due to sub-pixel leaf billboards, compared to ground truth
(d). Using conservative raster with hashed alpha testing (c)
ensures full coverage, but the alpha threshold ατ must be
modified based on sub-pixel coverage to avoid the over-
sampled billboards shown here.

Discrete visibility test. Unlike alpha blending, alpha
testing gives binary visibility. Geometry is either visible or
not in each pixel. As geometry approaches or recedes from
the viewer, pixels suddenly transition between covered and
not covered. This discretely erodes geometry with increas-
ing distance (see Figure 3). At some point, 1-pixel wide
geometry erodes to 0-pixel wide geometry and disappears.

Coarse raster grid. With enough distance, even proxy
billboard geometry becomes sub-pixel. In this case, a rela-
tively coarse rasterization grid (i.e., sampling at pixel cen-
ters) poorly captures the geometry. Some billboards may not
appear, causing an apparent loss of coverage (see Figure 4).
Our work does not address this issue, though conservative
rasterization and multisampling reduce the problem.

3 STATE OF THE ART IN ALPHA TESTING

Game developers have dealt with disappearing alpha-
mapped geometry for years, as games often display foliage,
fences, and hair from afar. Various techniques can help
manage the problem.

Adjusting ατ per texture mipmap level. Since mipmap-
ping filters alpha, adjusting ατ per mip-level can correct for
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reduced variance. Consider a screen-aligned, alpha-tested
billboard covering A0 pixels where a0 pixels pass the alpha
test at mip level 0. Seen at a distance, this screen-aligned
billboard might use mip level i. We expect a consistent
percentage of pixels passing the alpha test, i.e.:

a0/A0 ≈ ai/Ai. (1)

One can precompute test thresholds ατ (i) that maintain this
ratio for each mipmap. But content affects this threshold,
so it differs between textures and even within a mip level
(i.e., we want ατ (i, u, v)). Even perfect per-level thresholds
do not prevent geometry disappearing with distance; the
fence in Figure 3 has nearly constant ατ (i) but still quickly
disappears with distance.

Adjust stored α values per mipmap level. Castano [8]
proposes a similar, mathematically equivalent, approach.
Rather than requiring variable ατ (i) that complicates shader
code, the alpha values in each mipmap level are premulti-
plied by 0.5/ατ (i) at asset creation time. The allows use of
a fixed ατ = 0.5 at run time. Otherwise, this has identical
properties to defining variable ατ (i).

Adjust stored α values per texel. Castano [8] adjusts
alpha for each mipmap level. Separate per-texel adjustments
(e.g., by 0.5/ατ (i, u, v)) are possible, but it is unclear how
to compute ατ (i, u, v) or if independent texels adjustments
still just dialate alpha boundaries (e.g., see Figure 11).

Always sampling α from finest mip lod. As filtering
reduces alpha variance and changes threshold ατ (i), always
sampling α from mip level 0 trivially avoids the problem.
But this either requires two texel fetches per pixel (one for
RGB, one for α) or eliminates color prefiltering (using both
RGB and α from mip 0). An alternative limits the maximum
mipmap lod to a user-specified imax, using level imax when
i > imax. But both approaches can thrash the texture cache
and reduce the temporal stability of fine texture details.

Rendering first with α-test, and then with α-blend.
Alpha testing’s popularity stems from the difficulty of ef-
ficient order-independent blending. Naive alpha blending
causes halos where the z-buffer gets polluted by transpar-
ent fragments. By first rendering with alpha testing and
then rerendering with alpha blending, z-buffer pollution is
reduced [12]. This guarantees transparent fragments never
occlude opaque ones, but requires rendering alpha-mapped
geometry twice and does not work with deferred shading.

Supersampling. When storing binary visibility, a base
texture’s alpha channel contains only 0s or 1s. With suf-
ficiently dense supersampling, one can always access the
full resolution texture, providing accurate visibility. But the
required density can be arbitrarily high, due to geometric
transformations and parameterizations.

Alpha-to-coverage. With n-sample multisampling, alpha
is discretized and outputs bnαc dithered binary coverage
samples [13]. Usually these dither patterns are fixed, causing
correlations between layers and preventing correct multi-
layer compositing. Enderton et al. [11] propose selecting
random pattern permutations to address this problem.

Screen-door transparency. While fairly uncommon to-
day, screen-door transparency behaves similar to alpha-to-
coverage except that dithering occurs over multiple pixels.
Various mask selection techniques exist for screen-door
transparency [14], but even random mask patterns lead to

(a) (b) (c) (d) (e) (f)
Fig. 5: A minified cedar tree using (a) alpha testing, stochas-
tic alpha testing with (b) 1, (c) 4, (d) 16, and (e) 64 samples
per pixel, and (f) a supersampled ground truth using sorted
alpha blending.

correlation between composited layers and repeated dither
patterns visible over the screen.

4 STOCHASTIC ALPHA TESTING

To provide a mental framework to help understand hashed
alpha testing, we first introduce the idea of stochastic alpha
testing. Essentially, stochastic alpha testing replaces tradi-
tional alpha testing’s fixed threshold (ατ = 0.5) with a
stochastic threshold (ατ = drand48()). This replaces one
sample on a regular grid (i.e., sampling [0..1) at 0.5) with
one uniform random sample.

A stochastic alpha test is a simplified form of stochastic
transparency [11] with only one sample per pixel. While this
seems trivial, we observe that replacing a fixed alpha thresh-
old with a random one solves our disappearing coverage
problem: alpha mapped surfaces no longer disappear with
distance (see Figure 5). Unlike with a fixed alpha threshold,
with stochastic sampling the visibility, V = (α<ατ ) ? 0 : 1,
has the correct expected value E[V ] of α.

But a single random sample is insufficient. It introduces
significant noise, causing continuous twinkle (see video).
Reusing random seeds between frames and using stratifi-
cation helps stabilize noise for static geometry (see Laine
and Karras [15] and Wyman [16]). But whenever motion
occurs the high-frequency noise reappears. Supersampling
helps, but using just one sample per pixel is a major appeal
of alpha testing, given it works in forward and deferred
shading, without MSAA, and even on low-end hardware.

5 HASHED ALPHA TESTING

In hashed alpha testing we target visual quality equivalent to
stochastic alpha testing with temporal stability equivalent
to traditional alpha testing.

Instead of stochastic sampling, we propose using a hash
function to generate alpha thresholds. This is not particu-
larly surprising, as hash functions have often formed the
basis for common pseudo-random number generators [17].
Our contribution is recognizing that by careful manipulation
of hash function inputs, rather than hiding them inside a
pseudorandom number generator, we can better control the
stability of our random sample.
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Appropriate hash functions include those that generate
outputs uniformly distributed in [0..1), allowing direct sub-
stitution for uniform random number generators. To obtain
well distributed noise with spatial and temporal stability,
we sought to control our hash function inputs to achieve
the following properties:

• noise anchored to surface, to avoid appearance of
swimming;

• no sample correlations between overlapping alpha-
mapped layers; and

• discretization of ατ at roughly pixel scale, so subpixel
translations return the same hashed value.

5.1 Hash Function
Our hash function is less important than its properties. We
use the following hash function f : R2 → [0..1) from
McGuire [18]:
float hash( vec2 in ) {

return fract( 1.0e4 * sin( 17.0*in.x + 0.1*in.y ) *
( 0.1 + abs( sin( 13.0*in.y + in.x )))

);
}

We tried other hash functions, which gave largely equivalent
results. To hash 3D coordinates, a hash f : R3 → [0..1) may
provide more control. We found repeatedly applying our 2D
hash worked just as well:
float hash3D( vec3 in ) {

return hash( vec2( hash( in.xy ), in.z ) );
}

5.2 Anchoring Hashed Noise to Geometry
To avoid noise swimming over surfaces, hash() inputs must
stay fixed under camera and object motion. Candidates for
stable inputs include those based on texture, world-space,
and object-space coordinates.

In scenes with a unique texture parameterization, texture
coordinates work well. But many scenes lack such parame-
terizations.

Hashing world-space coordinates provides stable noise
for static geometry, and our early tests used world-space co-
ordinates. However, this fails on dynamic geometry. Object-
space coordinates give stable hashes for skinned and rigid
transforms and dynamic cameras.

All our stability improvements disappear if coordinate
frames become sub-pixel, as each pixel then uses different
coordinates to compute threshold ατ . It is vital to use
coordinates consistent over an entire aggregate surface (e.g.,
a tree) rather than a part of the object (e.g., each leaf).

5.3 Avoiding Correlations Between Layers
For overlapping alpha-mapped surfaces, reusing ατ thresh-
olds between layers introduces undesirable correlations
similar to those observed in hardware alpha-to-coverage.
These correlations are most noticeable when hashing
window- or eye-space coordinates, but they can also arise
for texture-space inputs.

Including the z-coordinate in the hash trivially removes
these correlations. We recommend always hashing with 3D
coordinates to avoid potential correlations.

5.4 Achieving Stable Pixel-Scale Noise
Under slow movement we do not want new ατ thresholds
between frames, as this causes severe temporal noise. But
we still expect ατ to vary between pixels, allowing dithering
of opacity over adjacent pixels. This suggests using pixel-
scale noise, allowing reuse of ατ for subpixel movements.
Since noise is anchored to the surface, for larger motions ατ
will also be reused, just in different pixels.

5.4.1 Stability For Screen-Space Translations in X and Y
For stable pixel-scale noise, we normalize our object-space
coordinates by their screen-space derivatives and clamp.
This causes all values in a pixel sized region to generate
the same hashed value:
// Find the derivatives of our object-space coordinates
float pixDeriv = max( length(dFdx(objCoord.xyz)),

length(dFdy(objCoord.xyz)) );

// Scale of noise in pixels (w/ user param g_HashScale)
float pixScale = 1.0/(g_HashScale*pixDeriv);

// Compute our alpha threshold
float ατ = hash3D( floor(pixScale*objCoord.xyz) );

Here, pixScale scales objCoord so that we discretize our hash
input (via the floor()) at roughly pixel scale, allowing all
inputs within a pixel-sized region to return the same hashed
value. User parameter g_HashScale controls the target noise
scale in pixels (default 1.0). Changing g_HashScale is useful
if the chosen hash outputs noise at another frequency. Also,
when temporal antialiasing (see Section 7.2.1), using noise
with subpixel scale can allow for temporal averaging.

5.4.2 Stability For Screen-Space Translations in Z
That approach gives stable noise under small vertical and
horizontal translations. But moving along the camera’s z-
axis continuously changes derivatives dFdx() and dFdy(),
thus changing hash inputs. This gives noisy results, com-
parable to stochastic alpha testing, as ατ thresholds are
effectively randomized by the hash each frame.

For stability under z-translations, we need to discretize
changes induced by such motion. In this case, only pixDeriv

changes, so discretizing it adds the needed stability:
// To discretize noise under z-translations:
float pixDeriv = floor( max(length(dFdx(objCoord.xyz)),

length(dFdy(objCoord.xyz))) );

But this still exhibits discontinuities if pixDeriv simulta-
neously changes between discrete values in many pixels,
e.g., when drawing large, view-aligned billboards. Ideally,
we would change our noise slowly and continuously by
interpolating between hashes based on two discrete values
of pixDeriv, as below:
// Find the discretized derivatives of our coordinates
float maxDeriv = max( length(dFdx(objCoord.xyz)),

length(dFdy(objCoord.xyz)) );
vec2 pixDeriv = vec2( floor(maxDeriv), ceil(maxDeriv) );

// Two closest noise scales
vec2 pixScales = vec2( 1.0/(g_HashScale*pixDeriv.x),

1.0/(g_HashScale*pixDeriv.y) );

// Compute alpha thresholds at our two noise scales
vec2 alpha = vec2(hash3D(floor(pixScales.x*objCoord.xyz)),

hash3D(floor(pixScales.y*objCoord.xyz)));

// Factor to interpolate lerp with
float lerpFactor = fract( maxDeriv );



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2017 5

// Find the discretized derivatives of our coordinates
float maxDeriv = max( length(dFdx(objCoord.xyz)),

length(dFdy(objCoord.xyz)) );
float pixScale = 1.0/(g_HashScale*maxDeriv);

// Find two nearest log-discretized noise scales
vec2 pixScales = vec2( exp2(floor(log2(pixScale))),

exp2(ceil(log2(pixScale))) );

// Compute alpha thresholds at our two noise scales
vec2 alpha=vec2(hash3D(floor(pixScales.x*objCoord.xyz)),

hash3D(floor(pixScales.y*objCoord.xyz)));

// Factor to linearly interpolate with
float lerpFactor = fract( log2(pixScale) );

// Interpolate alpha threshold from noise at two scales
float x = (1-lerpFactor)*alpha.x + lerpFactor*alpha.y;

// Pass into CDF to compute uniformly distrib threshold
float a = min( lerpFactor, 1-lerpFactor );
vec3 cases = vec3( x*x/(2*a*(1-a)),

(x-0.5*a)/(1-a),
1.0-((1-x)*(1-x)/(2*a*(1-a))) );

// Find our final, uniformly distributed alpha threshold
float ατ = (x < (1-a)) ?

((x < a) ? cases.x : cases.y) :
cases.z;

// Avoids ατ == 0. Could also do ατ=1-ατ

ατ = clamp( ατ, 1.0e-6, 1.0 );

Listing 1: Code for our (isotropic) hashed alpha threshold.

// Interpolate alpha threshold from noise at two scales
float ατ = (1-lerpFacor)*alpha.x + lerpFactor*alpha.y;

This almost achieves our goal, but has two problems. First,
it fails for 0 ≤ maxDeriv < 1. To solve this we discretize
pixScale on a logarithmic scale, akin to the logarithmic steps
in a texture’s mipmap chain, instead of discretizing pixDeriv

on a linear scale:

// Scale of noise in pixels (w/ user param g_HashScale)
float pixScale = 1.0/(g_HashScale*maxDeriv);

// Discretize pixScales on a logarithmic scale
vec2 pixScales = vec2( exp2(floor(log2(pixScale))),

exp2(ceil(log2(pixScale))) );

// Factor to interpolate lerp with
float lerpFactor = fract( log2(pixScale) );

A trickier problem arises during interpolation. A well-
designed hash function f : R2 → [0..1) produces uniformly
distributed output values. Interpolating between two uni-
formly distributed values does not yield a new uniformly
distributed value in [0..1). This introduces strobing because
the variance of our hashed noise changes during motion.

Fortunately, we can transform our output back into an
uniform distribution by computing the cumulative distribu-
tion function (of two interpolated uniform random values)
and substituting in our interpolated threshold. The cumula-
tive distribution function is:

cdf(x) =


x2

2a(1−a) : 0 ≤ x < a
x−a/2
1−a : a ≤ x < 1− a

1− (1−x)2
2a(1−a) : 1− a ≤ x < 1

(2)

for a = min(lerpFactor, 1-lerpFactor).
Combining these improvements gives the final compu-

tation for ατ shown in Listing 1.

Fig. 6: Our spatial hash from Listing 1 implicitly voxelizes
space (boxes). Samples in a voxel hash to the same value.
Depending on viewing angle, voxels intersect triangles (red
regions) either (left) isotropically or (center) anisotropically.
Section 6 modifies hash inputs to independently scale voxel
dimensions, (right) allowing us to resize intersection regions
to remain roughly uniform in x and y.

6 ANISOTROPIC HASHED ALPHA TESTING

Listing 1 provides stable hashing, but using the length of
object-space derivatives provides a uniform noise scale ir-
respective of surface orientation. Unfortunately, this creates
anisotropy if viewing surfaces obliquely, as projected noise
scales differ along screen-space x- and y-axes (see Figure 6).

6.1 Difficulties Removing Anisotropy
We tested numerous methods to remove anisotropy, before
realizing the impossibility given our desire for stable, uni-
form hash values varying on a discrete object-space grid.

Traditional anisotropic texture accesses repeatedly sam-
ple along a texture space vector. In hashed alpha testing, this
breaks stability by introducing temporal variance between
multiple subpixel samples. This approach fails to meet
hashed alpha’s goal: generation of a single pseudorandom
threshold rather than producing a nicely filtered value.

Discretizing hash inputs on a coordinate frame aligned
with the axes of anisotropy seems a compelling alternative.
But this discretization reintroduces temporal instability as
the axes of anisotropy change under most types of motion.

Continuing to discretize in object-space prevents a com-
plete removal of anisotropy, as mismatches between eye-
and object-space sampling grids introduce small, but vari-
able, amounts of anisotropy over the image.

6.2 Mitigating Anisotropy
Given our inability to completely avoid anisotropy, we de-
signed a simple algorithm that significantly reduces appar-
ent anisotropy yet maintains a approach similar to Listing 1.

Anisotropy arises when voxels of constant hash project
into screen space with different x- and y-extents (see Fig-
ure 6). With uniform discretization, we can generate pixel-
scale noise only along one axis. Noise along the other axis
will either be subpixel or too large, reintroducing temporal
flicker or generating elongated regions of constant hash (see
Figure 7).

To mitigate this problem, we select a separate dis-
cretization scale along each of the three object-space axes,
rather than picking a single scale based on the maximum
projected derivative. Changing these scales independently
significantly reduces anisotropy:
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(a) Traditional (b) Isotropic (c) Anisotropic

Fig. 7: An alpha-tested chain fence at extreme grazing an-
gle. (a) Traditional alpha tests make chains disappear. (b)
Isotropic hash samples get elongated along one axis. (c) Our
anisotropic hash samples have much better shape.

vec3 anisoDeriv = max( abs(dFdx(objCoord.xyz)),
abs(dFdy(objCoord.xyz)) );

vec3 anisoScales = vec3( 1.0/(g_HashScale*ansioDeriv.x),
1.0/(g_HashScale*anisoDeriv.y),
1.0/(g_HashScale*anisoDeriv.z) );

But using separate scales along our axes changes the average
size of our implicit voxels. The length length(dFdx(objCoord))

is longer than the individual components of dFdx(objCoord),
so anisotropic noise appears smaller for a given hash scale.
To maintain a consistent scale noise, we needed to scale our
lengths by

√
2:

vec3 anisoScales = vec3( 0.707/(g_HashScale*ansioDeriv.x),
0.707/(g_HashScale*anisoDeriv.y),
0.707/(g_HashScale*anisoDeriv.z) );

We then compute log-discretized scales independently for
each of our axes:
vec3 scaleFloor = vec3( exp2(floor(log2( anisoScales.x ))),

exp2(floor(log2( anisoScales.y ))),
exp2(floor(log2( anisoScales.z ))) );

vec3 scaleCeil = vec3( exp2(ceil(log2( anisoScales.x ))),
exp2(ceil(log2( anisoScales.y ))),
exp2(ceil(log2( anisoScales.z ))) );

And then we compute two hash values at opposite corners
of this anisotropic box:
vec2 alpha = vec2(hash3D(floor(scaleFloor*objCoord.xyz)),

hash3D(floor(scaleCeil*objCoord.xyz)));

We tried computing hash values at the 8 corners of each
anisotropic voxel, using trilinear interpolation with an ap-
propriate CDF to correct the interpolated distribution. But
this adds significant computation cost without improving
hash sample stability. Instead, we linearly interpolate be-
tween two hash values using the following factor represent-
ing a pixel’s fractional pre-discretized location in log-space:
vec3 fractLoc = vec3( fract(log2( anisoScale.x )),

fract(log2( anisoScale.y )),
fract(log2( anisoScale.z )) );

vec2 toCorners = vec2( length(fractLoc),
length(vec3(1.0f)-fractLoc) );

float lerpFactor = toCorners.x / (toCorners.x+toCorners.y);

Given this interpolation factor, the rest of the hashed alpha
code remains the same, correcting for the CDF of interpo-
lation between two uniform hashed samples to give a final
uniform threshold. This code is shown in Listing 2.

7 IMPLEMENTATION CONSIDERATIONS

When adding a simple modification like hashed alpha
testing into an existing renderer, a developer’s goal is im-
proving quality without changing the rendering workflow.

// Find the discretized derivatives of our coordinates
vec3 anisoDeriv = max( abs(dFdx(objCoord.xyz)),

abs(dFdy(objCoord.xyz)) );
vec3 anisoScales = vec3(

0.707/(g_HashScale*ansioDeriv.x),
0.707/(g_HashScale*anisoDeriv.y),
0.707/(g_HashScale*anisoDeriv.z) );

// Find log-discretized noise scales
vec3 scaleFlr = vec3( exp2(floor(log2(anisoScales.x))),

exp2(floor(log2(anisoScales.y))),
exp2(floor(log2(anisoScales.z))) );

vec3 scaleCeil = vec3( exp2(ceil(log2(anisoScales.x))),
exp2(ceil(log2(anisoScales.y))),
exp2(ceil(log2(anisoScales.z))) );

// Compute alpha thresholds at our two noise scales
vec2 alpha = vec2(hash3D(floor(scaleFlr*objCoord.xyz)),

hash3D(floor(scaleCeil*objCoord.xyz)));

// Factor to linearly interpolate with
vec3 fractLoc = vec3( fract(log2( anisoScale.x )),

fract(log2( anisoScale.y )),
fract(log2( anisoScale.z )) );

vec2 toCorners = vec2( length(fractLoc),
length(vec3(1.0f)-fractLoc) );

float lerpFactor = toCorners.x/(toCorners.x+toCorners.y);

// Interpolate alpha threshold from noise at two scales
float x = (1-lerpFactor)*alpha.x + lerpFactor*alpha.y;

// Pass into CDF to compute uniformly distrib threshold
float a = min( lerpFactor, 1-lerpFactor );
vec3 cases = vec3( x*x/(2*a*(1-a)),

(x-0.5*a)/(1-a),
1.0-((1-x)*(1-x)/(2*a*(1-a))) );

// Find our final, uniformly distributed alpha threshold
float ατ = (x < (1-a)) ?

((x < a) ? cases.x : cases.y) :
cases.z;

// Avoids ατ == 0. Could also do ατ=1-ατ

ατ = clamp( ατ, 1.0e-6, 1.0 );

Listing 2: Code for our anistropic hashed alpha threshold.

This requires working nicely with other common algorithms
without introducing new artifacts. This section looks at
some implementation considerations for using hashed alpha
tests in existing engines.

7.1 Fading in Noise with Distance
Because of hashed alpha testing’s basis in stochastic sam-
pling, it introduces (stable) noise everywhere alpha-tested
geometry is used. Developers may want to avoid introduc-
ing apparent randomness near the viewer, where existing
alpha testing works fairly well, and focus on improving
visual quality in the distance.

Fortunately, we can fade in hashed noise with distance.
Consider the following formulation of our alpha threshold:

ατ = 0.5 + δ, (3)

where δ=0 for traditional alpha testing and δ∈ [−0.5...0.5)
for hashed and stochastic variants. We suggest modifying
this as:

ατ = 0.5 + δ · b(lod), (4)

where b(lod) slowly blends in the noise, i.e., b(0) = 0 and
b(n) = 1 for some lod = n coarse enough for the developer
to rely entirely on hashed alpha tests. Values for n depend
on desired texture size and noise tolerance; we found n= 6
worked well in our experiments.
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We found that linearly ramping b still kept visible noise
too close to the camera. A quadratic ramp gave better
results, perhaps because apparent noise depends on solid
angle, which changes with the square of distance. We used
the following function to transition between traditional and
hashed alpha testing:

b(x) =


0 : x ≤ 0

(x/n)2 : 0 < x < n

1 : x ≥ n.
(5)

7.1.1 Fading in Noise With Anisotropic Texture Sampling

Equation 5 fails for alpha-tested surfaces viewed at a graz-
ing angle. This occurs since anisotropic filtering repeatedly
accesses finer mip levels, causing alpha geometry to dis-
appear even at relatively low mip levels. This means the
transition to a hashed alpha test needs to occur at lower
mip levels than in regions sampled isotropically. Scaling x
based on anisotropy, before computing b(x), fixes this:

// Find degree of anisotropy from texture coords
vec2 dTex = vec2( length(dFdx(texCoord.xy)),

length(dFdy(texCoord.xy)) );
float aniso = max( dTex.x/dTex.y, dTex.y/dTex.x );

// Modify inputs to b(x) based on degree of aniso
x = aniso * x;

Higher anisotropy increases x, varying ατ more in Equa-
tion 4, avoiding alpha maps disappearing at grazing angles.

7.2 Hashed Alpha Testing With Temporal Antialiasing

Given widespread use of temporal antialiasing (TAA) in
games [5], hashed alpha testing needs to work seamlessly
with temporal accumulation techniques. Since hashed test-
ing derives from stochastic sampling, one might assume
it works trivially with TAA. But changing hash inputs to
induce stability explicitly creates pixel-sized noise. Naive
application of TAA gives smooth-edged, pixel-sized blocks
rather than accumulating stochastic coverage temporally.

We see three simple approaches to integrate TAA with
hashed alpha testing: reduce the global noise scale below
one pixel, use temporally independent hash samples, or
temporally stratify the hash samples.

These techniques all reduce noise, but as in stochastic
transparency [11], the eight jittered samples TAA typically
uses is insufficient for converged results. This can introduce
temporal flicker. We found temporally stratifying hash sam-
ples gave the most stable results (see Section 7.2.3).

7.2.1 Temporal Antialiasing by Reducing Noise Scale

Reducing the global noise scale g_HashScale to a value be-
low 1.0 gives subpixel noise. TAA’s temporal camera jitter
averages this subpixel noise over multiple frames. For n
temporal samples, using a g_HashScale of

√
1/n gives the

ideal number of n unique subpixel hash values.
Unfortunately, reducing noise scale below 1.0 reduces

hash sample stability under motion. Until sampling suffi-
ciently for a converged solution, this effectively trades off
spatial stability for temporal stability. With the 8 TAA sam-
ples commonly used today, this approach does not provide
a particularly compelling solution.

7.2.2 Temporal Antialiasing by Independent Hashing
Instead of introducing subpixel noise and trusting to TAA
jitter to accumulate the results, another approach keeps the
pixel-scale hash grid but chooses n different hash values
over the n frames in a n-sample TAA.

A naive solution uses multiple different hash functions,
using ατ = hash[i](hashInput.xyz) for frame i, repeating
every n frames. However for 8-sample TAA, this requires
designing 8 good hash functions and dynamically selecting
which to execute each frame.

In theory, separate regions of hash space are also inde-
pendent. This means hash(input) and hash(input + offset)
give independent random thresholds, allowing us to select
ατ = hash(hashInput.xyz + offset[i]) for frame i. In this
case, rather than designing separate hash functions, we just
need to provide a list of n unique vector offsets.

While this approach gives a stable set of n hash thresh-
olds ατ over any set of n frames, it still gives temporally
unstable results. Since TAA effectively averages via an ex-
ponentially weighted moving average, the highest weighted
threshold ατ has an n-frame cycle. When these n samples
are independent, this introduces temporal flicker.

7.2.3 Temporal Antialiasing by Temporal Stratification
Rather than using independent hash samples, we can select
n dependent alpha thresholds, stratifying them to uniformly
sample [0...1) and distributing them temporally to reduce
the flicker introduced by an exponentally weighted moving
average. Given a hash sample χ, computed via the code in
Listings 1 or 2, we define alpha threshold ατ over an n-
frame TAA sequence:

ατ = fract

(
χ+

i

n

)
, ∀ i ∈ [0...n−1] (6)

As with the independent hash samples in Section 7.2.2, this
gives spatial stability but temporally flickers as the TAA
cycles between heavily weighing low and high thresholds.

An exponential moving average weighs one of our n
stratified samples higher than others, but we can reorder
to ensure good distribution of our two highest weighted
samples. With a stratified sample set, we know half of our
samples will have ατ < 1

2 and half will have ατ ≥ 1
2 . We

should alternate so every other sample is below 1
2 , e.g.:

j =

⌊
i

2

⌋
+ (i mod 2) ∗ n

2

ατ = fract

(
χ+

j

n

)
This provided sufficient stability for us over 8 temporal
samples, though for an even better, low discrepancy sam-
ple distribution we could define j using a radical-inverse
sequence like the binary van der Corput sequence.

7.3 Using Premultiplied Alpha

As hashed alpha testing accesses diffuse texture samples
from a somewhat larger region than standard alpha tests,
care is required to avoid sampling in-painted diffuse colors
added by artists in transparent regions, especially at higher
mip levels when we filter from large texture regions.
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Using premultiplied alpha allows correct mipmaping
and avoids this problem (e.g., see Glassner [19] for fur-
ther discussion). However premultipled alpha textures store
(αR,αG,αB, α), so we need to divide by alpha before
returning our alpha tested color (R,G,B) to maintain con-
vergence to ground truth when increasing sample counts.

Hashed alpha testing works with non-premultiplied dif-
fuse textures, but we frequently found that when our hash
returned ατ < 0.5, colors bled from transparent texels and
introduced arbitrary colored halos at alpha boundaries.

8 APPLICATIONS TO ALPHA-TO-COVERAGE

As noted in Section 3, alpha-to-coverage discretizes frag-
ment alpha and outputs bnαc coverage bits dithered over
an n-sample buffer. Generating bnαc coverage bits is equiv-
alent to supersampling the alpha threshold, i.e., performing
n alpha tests with thresholds:

ατ =
0.5

n
,

1.5

n
, ...,

n− 0.5

n
. (7)

This observation reveals that traditional alpha testing is a
special case, where n = 1.

Applying hashed or stochastic alpha testing to alpha-to-
coverage is equivalent to jittered sampling of the thresholds:

ατ =
χ1

n
,

1 + χ2

n
, ...,

n− 1 + χn
n

, (8)

for hashed samples χi ∈ [0...1). χi can be chosen indepen-
dently per sample or once per fragment (i.e., χi=χj).

Traditional alpha-to-coverage uses fixed dither patterns
for all fragments with the same alpha. This introduces corre-
lations between overlapping transparent fragments, causing
aggregate geometry to lose opacity (see Figure 1).

To avoid this, we compute a per-fragment offset αo,
increment α+, and apply per-sample alpha thresholds:

ατ =
χi + ((αo + iα+) mod n)

n
, ∀ i ∈ [0...n−1] (9)

Given hashed ξ1, ξ2∈ [0..1) and limiting n to powers of two,
αo = bnξ1c is an integer between 0 and n− 1 and α+ =
2b0.5nξ2c+1 is an odd integer between 1 and n−1. This
decorrelates the jittered thresholds if ξ1 or ξ2 varies with
distance to the camera.

8.1 Applications to Screen Door Transparency
Screen-door transparency simply dithers coverage bits over
multiple pixels rather than multiple sub-pixel samples.
So similar randomization of the interleaved ατ thresholds
and decorrelation between layers can occur between pixels
rather than within a pixel.

9 OTHER APPLICATIONS OF HASHED SAMPLING

Until this point, we focused our description on how stable
hashed samples apply to disappearing alpha-tested geom-
etry. However, interactive applications strive for temporal
stability in various domains, and stable hashing may prove
useful either for directly generating samples or improving
the quality of reprojection caching [20].

For example, light transport algorithms often use Monte
Carlo sampling to approximate the rendering equation [21].

(a) Isotropic samples (b) Anisotropic samples

Fig. 8: Using hashed pseudorandom samples for ambient
occlusion, with one visibility ray per pixel. Noise remains
largely stable under motion and stays fixed to the geometry.
The top image uses ansiotropic sampling (see Section 6), but
insets compare (a) isotropic and (b) anisotropic sampling.

Real-time constraints can prevent the increased ray counts
needed to avoid temporal noise.

A common approach defines per-pixel, fixed pseudo-
random seeds, but this induces a screen-door effect visible as
geometry moves relative to the screen. We instead generate
samples with our stable, pixel-sized grid. This produces
largely stable noise that stays fixed to the geometry, even
under motion. We demonstrate this for single ray per pixel
ambient occlusion (see Figure 8). This is simple enough to
visually understand the hash samples, yet remains repre-
sentative of more complex light transport.

For our simple test, rather than computing ατ via List-
ing 2, we generate two hash samples χ1, χ2 ∈ [0...1) with
the same code, but using two different hash3D() functions for
χ1 and χ2:
float hash3D_χ1(vec3 in)

{ return hash( vec2( hash( in.xy ), in.z ) ); }
float hash3D_χ2(vec3 in)

{ return hash( vec2( in.x, hash( in.yz ) ) ); }

As described in Section 7.2.2, independent samples can also
be generated using different offsets, e.g.,:
float hash3D_χ1(vec3 in) { return hash3D( in+offset[0] ); }
float hash3D_χ2(vec3 in) { return hash3D( in+offset[1] ); }

We convert these hashed values into a cosine-sampled hemi-
sphere in the standard way:
vec3 direction = vec3( sqrt( χ1 ) * cos( 2πχ2 ),

sqrt( χ1 ) * sin( 2πχ2 ),
sqrt( max( 0.0, 1.0 - χ1 ) ) );

Extending to more general light transport algorithms, which
require many stable samples each frame, simply requires us-
ing additional offset[i] values. Alternatively, a hash return-
ing an integer could seed a more traditional pseudorandom
number generator.

10 STOCHASTIC TRANSPARENCY COMPARISON

Stochastic alpha testing essentially simplifies stochastic
transparency to one sample per pixel. Hence, when using
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TABLE 1: Cost comparisons for traditional, hashed, and
stochastic alpha tests at 1920×1080 on a GeForce GTX 1080.
Performance of isotopic and anisotropic hashing were equal,
given our measurement error; the single column in our table
represents both.

Trad. Hashed Stoch.
Scene # tris α test α test α test
Single fence 2 0.06 ms 0.08 ms 0.20 ms
Bearded Man 7.6 k 0.14 ms 0.16 ms 0.58 ms
Potted Palm 68 k 0.10 ms 0.12 ms 0.42 ms
Bishop Pine 158 k 0.22 ms 0.30 ms 0.75 ms
Japanese Walnut 227 k 0.28 ms 0.36 ms 0.99 ms
European Beech 386 k 0.39 ms 0.50 ms 1.69 ms
Sponza with Trees 900 k 1.05 ms 1.15 ms 4.04 ms
QG Tree 2,400 k 1.08 ms 1.22 ms 3.01 ms
UE3 FoliageMap 3,000 k 2.52 ms 2.86 ms 11.42 ms
San Miguel 10,500 k 5.19 ms 5.28 ms 7.30 ms

more tests per pixel stochastic alpha testing converges to
ground truth, just as stochastic transparency does.

In this light, based on the thresholds in Equation 7,
alpha-to-coverage is stochastic transparency with regular
instead of random samples. Using randomized thresholds,
as in Equation 8, corresponds to stratified stochastic trans-
parency.

But a key difference is that alpha testing is designed and
frequently expected to work with a single sample per pixel.
Avoiding temporal and spatial noise is key for adoption,
hence our stable hashed alpha testing, which we believe pro-
vides an appealing alternative to traditional alpha testing.

11 RESULTS

We prototyped our hashed and stochastic alpha test in
an OpenGL-based renderer using the Falcor prototyping
library [22]. We did not optimize performance, particularly
for stochastic alpha testing, as we sought stable noise rather
than optimal performance. Timings include logic to explore
variations to hashes, fade-in functions, and other normaliza-
tion factors.

Table 1 shows performance relative to traditional alpha
testing, rendered at 1920×1080 and using one shader for all
surfaces, transparent and opaque. Our added overhead for
hashed alpha testing is all computation, without additional
texture or global memory accesses. Anistopic hashed alpha
testing increases costs, perhaps 10–20% over the isotropic
variant, but with our limited timing precision and our test’s
small overhead the timing runs were identical for both
variants. Our stochastic alpha test prototype uses a random
seed texture, requiring synchronization to avoid correlations
from seed reuse. This causes a significant slowdown.

Cost varies with number, depth complexity, and screen
coverage of alpha-mapped surfaces. At 1920×1080 with one
test per fragment, our hashed alpha test costs an additional
0.1 to 0.3 ms per frame for scenes with typical numbers of
alpha-mapped fragments. For stochastic alpha testing, syn-
chronization costs increase greatly in high depth complexity
scenes.

Figure 1 shows a game-quality head model with alpha-
mapped hair billboards. With distance the hair disappears.
This is most visible in his beard, as the underlying diffuse

(a) Traditional (b) Hashed (c) Castano [8]

Fig. 10: A comparison between traditional and hashed alpha
testing with Castano’s precomputed per-mip modifications
to texture alpha, which tends to enlarge thin geometry.

(a) Traditional (b) Hashed (c) Fade in hash

Fig. 12: With alpha testing, tree leaves disappear with dis-
tance. Hashed alpha testing keeps these leaves, but nearby
leaves have noisy edges and, due to alpha of 0.99, some in-
ternal noise. Fading in the hash contribution, per Section 7.1,
keeps distant leaves without nearby noise.

texture has no hair painted on his chin. See the supplemental
video for dynamic comparisons with this model.

Figure 9 shows similar comparisons on a number of
artist-created tree models provided as samples by XFrog.
These trees’ alpha maps contain 50–75% transparent pixels,
causing foliage to disappear quickly when rendered in the
distance or at low resolution. Hardware accelerated alpha-
to-coverage has high layer-to-layer correlation that causes
leaves to appear as a single layer and overly transparent.
Hashed alpha testing and hashed alpha-to-coverage fix
these problems and appear much closer to the ground truth,
despite rendering at lower resolution.

In Figures 10 and 11, we compare hashed alpha against
the widely used approach of Castano [8], which computes a
per-mipmap alpha threshold and bakes this into the texture
as a preprocess. This approach dilates distant geometry to
keep it visible, giving an overly dense appearance on the
thin leaves in Figure 10.

Figure 11 compares hashed alpha testing, 8× MSAA us-
ing hashed alpha-to-coverage, and both hashed techniques
with temporal antialiasing. Interestingly using hashed alpha
testing with TAA gives results largely similar to alpha-to-
coverage, and temporally antialiased alpha-to-coverage is
nearly indistinguishable from the ground truth.

Figure 12 shows a more complex example where hashed
noise may be undesirable nearby and the fade-in from
Section 7.1 maintains crisp edges near the viewer.
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Fig. 9: Four plant models whose alpha-mapped polygons disappear with distance. This also happens when rendering at
lower resolution (left four columns), which allows for better comparisons to our supersampled ground truth (right column).
Notice how alpha testing loses alpha-mapped details and alpha-to-coverage introduces correlations that under represent
final opacity where transparent polygons overlap. Both hashed alpha testing and hashed alpha-to-coverage largely retain
appropriate coverage, but both introduce some noise.
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(a) Ground truth (b) Traditional (c) Castano [8] (d) Hashed (e) Hashed, TAA (f) Hash A2C (g) A2C w/TAA

Fig. 11: Comparing distant renderings of the bearded man using various techniques, including a ground truth sorted
blend, traditional alpha testing, Castano’s tweaks to texture alpha values, as well as hashed alpha testing and hashed
alpha-to-coverage (both with and without temporal antialiasing).

(a) (b) (c)

Fig. 13: Difference images from before and after a sub-pixel
translation along the x-axis using a (a) traditional alpha test,
(b) hashed alpha test, and (c) stochastic alpha test. Difference
images inverted for better visibility.

(a) (b) (c) (d) (e)

Fig. 14: A synthetic example, with a checkerboard texture
where half the texels have α = 0 and half have α = 1. We
compare (a) traditional alpha testing, (b) isotropic hashed
alpha, (c) anisotropic hashed alpha, (d) 8× isotropic alpha-
to-coverage, and (e) 8× anisotropic alpha-to-coverage.

Figure 13 compares the temporal stability of traditional,
hashed, and stochastic alpha testing under slight, sub-pixel
motion. Note that under the same sub-pixel motion hashed
alpha testing exhibits temporal stability roughly equivalent
to traditional alpha testing. Stochastic alpha testing and
methods that do not anchor noise or discretize it to pixel
scale exhibit significantly more instability.

Figure 14 shows a synthetic example of a planar checker-
board texture containing half opaque and half transparent
texels. In this case, alpha testing does not disappear with
distance but aliases. Hashed alpha testing replaces this alias-
ing with noise, and using MSAA-based alpha-to-coverage

(a) Traditional alpha test (b) Hashed alpha test

Fig. 15: Two foveated images, as per Patney et al. [23]. In
both, the viewer looks towards the curtains (yellow circle).
Regions outside the circle use progressively lower quality.
Low resolution shading uses coarser mipmap levels, causing
traditional alpha tests to fail. With hashed alpha testing, the
foliage maintains its aggregate appearance.

converges to a desired uniform gray in the distance.
Beyond use for distant or low-resolution alpha-mapped

geometry, other applications exist for hashed alpha testing.
In head-mounted displays for virtual reality, rendering at
full resolution in the user’s periphery is wasteful, especially
as display resolutions increase. Instead, foveated render-
ing [24] uses at lower resolution away from a user’s gaze.
Patney et al. [23] suggest prefiltering all rendering terms,
but they were unable to support alpha testing due to an
inability to prefilter the results. Naive alpha testing in
foveated rendering causes even nearby foliage to disappear
in the periphery (see Figure 15). With temporal antialiasing,
hashed alpha testing enables use of alpha mapped geometry
in foveated renderers.

Figure 16 shows hashed alpha testing in a more complex
environment. Results are more subtle as scene scale is small
enough to minimize the pixels accessing coarse mipmaps.

12 CONCLUSIONS

We introduced the idea of stochastic or hashed alpha testing to
address the problem of alpha-mapped geometry disappear-
ing with distance. Stochastic alpha testing uses a random ατ
rather than a fixed threshold of 0.5. To address the temporal
noise stochasm introduces, we proposed a procedural hash
to provide a stable noisy threshold.

We obtained stable, pixel scale noise by hashing on dis-
cretized object-space coordinates at two scales. We showed
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(a) Traditional alpha test (b) Hashed alpha test

Fig. 16: Disappearing geometry in San Miguel.

how to ensure the interpolated hash value maintains a
uniform distribution, how to maintain sample quality in
the presence of anisotropy, and how hashed alpha testing
works with temporal antialiasing. We demonstrate temporal
stability both in Figure 13 and the accompanying video. And
we suggested how this stable sampling scheme could extend
to other stochastic light transport effects. We provided inline
code to replicate our hashed test.

Thinking about alpha-to-coverage and screen door trans-
parency in the context of varying ατ provides insights,
showing them all to be different discrete sampling strate-
gies for transparency: alpha test and alpha-to-coverage
perform regular sampling, screen-door transparency inter-
leaves samples, stochastic alpha testing randomly samples,
and hashed alpha testing uses quasi-random sampling via a
uniform hash function.

While our hashed test provides spatially and temporally
stable noise without scene-dependent parameters, we did
not explore the space of 2D and 3D hash functions to
see which minimizes flicker between frames. Additionally,
using more sophisticated hash inputs than object-space co-
ordinates may generalize over a larger variety of highly
instanced scenes. Both areas seem fruitful for future work.
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