
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 1

Frustum-Traced Irregular Z-Buffers: Fast,
Sub-pixel Accurate Hard Shadows

Chris Wyman, Member, IEEE, Rama Hoetzlein, and Aaron Lefohn

(Invited Extension of I3D 2015 Paper)

Abstract—We further describe and analyze a real-time system for rendering antialiased hard shadows using irregular z-buffers (IZBs)
that we first presented in Wyman et al. [1]. We focus on identifying bottlenecks, exploring these from an algorithmic complexity
standpoint, and presenting techniques to improve performance. Our system remains interactive on a variety of game assets and CAD
models while running at resolutions 1920× 1080 and above and imposes no constraints on light, camera or geometry, allowing fully
dynamic scenes without precomputation. We render sub-pixel accurate, 32 sample per pixel hard shadows at roughly twice the cost of
a single sample per pixel. This allows us to smoothly animate even subpixel shadows from grass or wires without introducing spatial or
temporal aliasing.

Prior algorithms for irregular z-buffer shadows rely heavily on the GPU’s compute pipeline. Instead we leverage the standard
rasterization-based graphics pipeline, including hardware conservative raster and early-z culling. Our key observation is noting a
duality between irregular z-buffer performance and shadow map quality; irregular z-buffering is most costly exactly where shadow
maps exhibit the worst aliasing. This allows us to use common shadow map algorithms, which typically improve aliasing, to instead
reduce our cost. Compared to state of the art ray tracers, we spawn similar numbers of triangle intersections per pixel yet completely
rebuild our data structure in under 1 ms per frame.

Index Terms—shadows, irregular z-buffer, cascades, frustum tracing, alias-free shadows, rasterization.

F

1 INTRODUCTION

WHILE conceptually simple, rendering artifact-free, an-
tialiased hard shadows in real-time remains an enor-

mous challenge. Most modern applications use variants of
shadow mapping [2]. But due to discretization and sam-
pling mismatches between eye- and light-space, robust and
artifact free results remain elusive even with high quality
filtering [3] and cascades [4].

We describe the evolution of our system, designed with a
simple goal: interactive, sub-pixel accurate hard shadows on
content representative of modern workloads at 1920×1080
and above. We began without any preconceptions except
that shadow maps induce aliasing. Since aliasing is a diffi-
cult fundamental problem in graphics, addressing shadow
map aliasing after the fact may be more challenging than
simply computing shadows correctly. While desirable, ex-
tendability to soft shadows was not a design goal; our
primary goal was robust, antialiased hard shadows with a
secondary aim of speed.

To avoid aliasing, we only considered analytical shadow
techniques that sample in eye space at or below the pixel
level. This leaves three broad algorithmic classes: ray trac-
ing [5], shadow volumes [6], and irregular z-buffers [7].
Fundamentally, all three analytic approaches perform ray-
triangle intersections; the key difference is how tests are
spawned. Ray tracers query visibility along individual rays,
irregular z-buffers rasterize in light space, and shadow vol-
umes indirectly determine ray-triangle occlusion by testing

• C. Wyman, R. Hoetzlein, and A. Lefohn are with
NVIDIA Corporation in Redmond, WA and Santa Clara, CA.
E-mail: chris.wyman@acm.org

Manuscript received ???; revised ???.

primitives representing shadow boundaries.
We pursued variants of irregular z-buffers (IZBs), which

appeared the most natural fit for today’s raster pipelines.
Ray tracing requires additional acceleration structures, and
shadow volumes either require object-space silhouette de-
tection or introduce complex hierarchies [8] to accelerate
brute force, per-triangle volumes.

Little research has explored efficient algorithms for IZBs.
Initial work proposed major hardware changes [7] and alter-
native data structures [9]. Later work [10], [11] showed hard-
ware implementations using GPU computing capabilities
rather than the graphics pipelines. Pan et al. [12] improved
quality, demonstrating antialiased shadow boundaries. To
our knowledge, nobody has eliminated the remaining key
problems with irregular z-buffering: poor scalability and
large performance variations between frames.

We demonstrate that IZB shadows scale to multi-million
triangle models and HD resolutions yet remain interactive
(see Figure 1). Initial prototypes required nearly 2 seconds
for complex models like the hairball. By simplifying and
streamlining the data structure and leveraging existing
strengths of the graphics pipeline we achieved two orders of
magnitude better performance. A key insight: we observe a
duality between irregular z-buffer performance and shadow
map quality. Regions that alias with shadow mapping have
lower performance with IZBs. This allows decades of re-
search improving quality and consistency of shadow maps
to help improve our performance.

Additional contributions of our system include:

• Antialiased shadows with consistently interactive
performance.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 2

Fig. 1. (Left) Our 32 sample per pixel hard shadows in the 613k triangle Chalmers Citadel (8.1 ms at 1920 × 1080). (Center) Compared with a
filtered 80922 shadow map, we avoid temporal and spatial aliasing from sampling mismatches and eliminate light leaking for contact shadows.
(Right) Shadows from a billboarded pine tree with alpha mapped textures (5.9, 3.2, and 2.8 ms for three IZB resolutions at 1920× 1080). To clarify
the impact of our work we used no image-space or postprocess antialiasing, so primary visibility remains aliased.

• An efficient implementation using existing graphics
pipelines to improve culling beyond that available to
code using only GPU compute.

• An efficient extension to render 32 sample per pixel
(spp) shadows.

• Extensive performance evaluation with quantified
gains for individual optimizations.

• An analysis of algorithmic complexity that theoreti-
cally motivates each of our optimizations.

• An extension of our algorithm to handle shadows
from alpha mapped textures.

To clarify these claims, we still explicitly sample shadows in
eye-space and any discrete sampling can introduce aliasing.
However, sampling rate is developer specified and reduces
performance sublinearly with number of samples. Unlike
shadow mapping, we introduce no new aliasing due to
sampling mismatches between eye- and light-space.

2 PREVIOUS WORK

Decades of shadow research provide developers with many
algorithmic choices [13] [14]. But until recently, the choice
in interactive contexts was limited to variants of shadow
volumes [6] and shadow maps [2].

Shadow volumes generate pixel accurate shadows by
constructing and testing the boundary of shadowed re-
gions. This proves difficult to do robustly and renders
invisible shadow quads that consume significant fill rate.
With advances addressing these issues [15] [16] some games
shipped using shadow volumes, but most developers still
avoid them.

Shadow maps are easily implemented and efficiently run
on GPUs, but regular sampling of visibility causes spatial
and temporal aliasing. Filtering [17] and the use of statistical
models [3] [18] partially hides aliasing, but often introduces
other artifacts. Distorting the light frustum [19], adaptively
refining [20], or fitting multiple shadow maps [4] improves
sampling quality but can introduce overhead, reduce ro-
bustness, and still exhibit aliasing.

Advances in the performance of ray tracing [5] may pro-
vide another alternative. Hardware acceleration improves
ray tracing performance [21], but adoption rates are unclear.

Ray query costs strongly depend on high quality acceler-
ation structures [22], which remain relatively expensive to
build. Concurrent work [23] suggests existing GPUs may
allow game quality ray traced shadows, though their grid of
lists structure resembles IZBs more than standard bounding
volume hierarchies.

Irregular z-buffers [7] provide another option within
existing graphics pipelines. Shadow maps use a light-space
z-buffer; IZBs instead use a light-space A-buffer [24], with
each light-space texel storing all pixels potentially occluded
by geometry in that texel. While a grid of lists structure
increases complexity over shadow maps, today’s GPUs con-
struct and traverse linked lists efficiently [25]. Key problems
with IZBs include poor scalability and high performance
variability. Prior GPU implementations [11] [12] typically
rendered images only at 5122 using models with under
100k triangles; performance scaled linearly with triangle
and pixel counts. Our initial IZB prototype exhibited 100:1
performance variations between some frames during even
basic movements like slight camera translations and rota-
tions.

However, these problems lie entirely in the performance
domain. While Johnson et al. [7] explored performance
characteristics on their proposed hardware, performance
characteristics on modern GPUs are largely unexplored.
By carefully identifying and removing key bottlenecks, we
designed an efficient implementation achievable today. The
2.9 million triangle hairball (in Figure 11) required 12.6
seconds in early work by Aila and Laine [9], 1.5 seconds
in our first GPU prototype, and 7.0 milliseconds today.

3 IRREGULAR Z-BUFFER REVIEW

Before describing our system, we briefly review irregular
z-buffer shadows. Johnson et al. [7] provide a much more
complete description worth revisiting for further details.

Irregular z-buffers avoid shadow map aliasing due to
mismatches between eye- and light-space sampling loca-
tions. Shadow maps use a regular sampling grid in both
eye- and light-space, and finding a robust bijection between
geometric samples on these grids remains unsolved. By
allowing light-space samples to occur irregularly, IZB shad-
ows easily pair samples. Visibility tests occur only where
needed—at pixels visible to the eye.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 3

Pi

Vi

Li
P

1 P2 P3

P4 P5 P6

P7 P8 P9

Fig. 2. (Left) A familiar mapping between view vector ~Vi, intersection
point Pi, and light direction ~Li. Shadow maps discretize light-space,
so shadow queries return the nearest neighbor rather than the visibility
along ~Li. (Right) Irregular z-buffer shadows store all sample points Pi

that project into each light-space texel, allowing exact shadows. Rather
than storing a single depth, as in shadow maps, IZBs store all points
that fall in a texel as a linked list.

By construction, an IZB bijectively maps each pixel vis-
ible from the eye to one sample in light-space; the pixel
represents ray ~Vi hitting geometry at Pi and a correspond-
ing light sample represents ray ~Li from Pi to the light (see
Figure 2). Shadow map queries along ~Li return the nearest
neighbor sample on the texel grid, only approximating true
visibility. IZBs store all samples and generate an accurate
visibility for every pixel.

3.1 Irregular Z-Buffer Construction
In theory, constructing an irregular z-buffer shadow map
works identically to regular shadow maps: one “rasterizes”
occluders over the irregular set of light rays ~Li, finding the
closest triangle along each ~Li. If the depth of the closest
triangle lies between the light and Pi we know that sample
is shadowed.

Since modern GPUs only rasterize over regular samples,
we need to store our irregular samples in a grid. A grid
of lists structure achieves this. Our irregular z-buffer is a
grid of light-space head pointers, each pointing to a linked
list containing irregular samples falling within the grid cell.
Intuitively, this is identical to a shadow map except texels
store a head pointer rather than a depth.

To create this grid of lists, we need to know where in
light-space pixels occur. This means IZBs require a prepass
to identify sample locations. Game engines commonly use
an eye-space z-prepass or deferred shading with a G-buffer
[26] to reduce overshading. Either provides exactly the
needed data: locations of visible pixels requiring shadow
queries. To identify IZB samples we run a compute pass
over this buffer, transforming pixels into light-space (via a
standard shadow map transformation) and inserting them
into their corresponding light-space lists (see Figure 2).

3.2 Computing Visibility with an Irregular Z-Buffer
Once we have our light-space grid of visible pixels, we
can compute per pixel shadowing by rasterizing occluder
geometry in light-space. Each rasterized fragment repre-
sents potential occlusion between its parent triangle and any
pixels in its corresponding light-space linked list. Traversing
the list and performing ray-triangle intersection or point-in-
shadow volume tests provides pixel accurate visibility.

Since pixels can lie anywhere within a light-space texel,
conservative rasterization is required; triangles must test
pixels for occlusion if the triangle covers any portion of a
texel (not just the center as in traditional rasterization).

3.3 Irregular Z-Buffer Pseudocode

Pseudocode describing this process follows:
High Level Pseudocode: Irregular Z-Buffer Shadows

// Step 1: Identify pixel locations we need to shadow
G(x, y)← RenderGBufferFromEye()

// Step 2: Add pixels to our light-space IZB data structure
for pixel p ∈ G(x, y) do

lsTexelp ← ShadowMapXform[GetEyeSpacePos(p)]
izbNodep ← CreateIZBNode[p]
AddNodeToLightSpaceList[lsTexelp, izbNodep]

end for

// Step 3: Test each triangle with pixels in lists it covers
for tri t ∈ SceneTriangles do

for frag f ∈ ConservateLightSpaceRaster(t) do
lsTexelf ← FragmentLocationInRasterGrid[f]
for node n ∈ IZBNodeList(lsTexelf) do

p← GetEyeSpacePixel(n)
visMask[p] = visMask[p] | TestVisibility[p, t]

end for
end for

end for

Initially this seems complex, but it is a relatively simple
modification to shadow mapping, essentially swapping the
order of light-space rasterization and sample projection and
inserting a list traversal instead of a simple z-comparison:

High Level Pseudocode: Shadow Maps

// Step 1: Render shadow map in light-space
for tri t ∈ SceneTriangles do

for frag f ∈ RasterizeInLightSpace(t) do
lsTexelf ← FragmentLocationInRasterGrid[f]
if zf < Z(lsTexelf) then Z(lsTexelf)← zf

end for
end for

// Step 2: Query shadow map for each pixel
for pixel p ∈ FinalRender do

lsTexelp ← ShadowMapXform[GetEyeSpacePos(p)]
visMask[p]← DistanceToLight(p) > Z(lsTexelp)

end for

3.4 A Comment on Notation

To ensure clarity throughout the paper, the term pixel rep-
resents a sample in eye-space, i.e., a fragment that will be
shaded on screen. A texel refers to a sample in light-space.
We compute primary visibility by rasterizing over pixels
and compute shadows by rasterising over texels.

The IZB itself is a grid of lists (shown in Figure 2). We
refer to the grid component as the head texture, since each
texel stores the head pointer for a linked list. The lists store
nodes, each of which corresponds to a pixel on screen.

When using multisample shadows, each pixel may
spawn multiple IZB nodes. However, each node still rep-
resents an entire pixel (including all of its subsamples). This
is why in Section 4 we discuss frustum-triangle tests—each
node is an entire pixel, representing a frustum to the light.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 4

µQuad

Fig. 3. (Left) A standard shadow ray query. (Center) Creating fragment
shadow frustum (at black point): project pixel footprint to the fragment
tangent plane; this “micro-quad” (µQuad) becomes the shadow frustum
base. (Right) Intersection tests project each triangle edge to the tangent
plane (i.e., identifying the shadow quad intersection), and use the pro-
jected edge to index a lookup table providing visibility for each sample.
Visibility sample locations (gray points) are developer specified during
lookup table construction.

4 ANTIALIASING VIA FRUSTUM-TRIANGLE TESTS

Like ray tracing, IZB shadows provide one binary visibility
for each query—as described above, once per pixel. To
achieve antialiased shadows we could simply add more
samples per pixel, independently adding each to our ir-
regular z-buffer. This correspondingly increases the lengths
of our linked lists, so this naive approach increases cost
linearly with sample count.

Instead, we took inspiration from beam tracing [27],
which can provide analytic subpixel visibility. Interactive
work often replaces beams with packet tracing [28], tiled
rasterization, or raster stamps to preserve spatial coherence
while using discrete samples. Numerous soft shadow tech-
niques trace beams from a point in space to the area light,
including algorithms for ray traced shadows [29], bitmask
soft shadows [30], and even IZB based soft shadows [11].

Our insight was by flipping these beams around we
would achieve antialiased shadows, tracing a frustum from
the point light back to a pixel footprint on the geometry (see
Figure 3). This is similar to Pan et al.’s [12] approach, though
we directly compute intersections in world space rather than
projecting back to the image plane.

More specifically, irregular z-buffers effectively query
ray-triangle intersections between a rasterized triangle and
each pixel stored in overlapping IZB linked lists. We achieve
antialiased shadows by replacing these ray-triangle intersec-
tions with frustum-triangle intersections. Efficient frustum
intersection occurs per pixel as follows:

1) Construct µQuads representing each pixel’s foot-
print projected onto the tangent plane (see Figure 3).

2) Independently transform each occluder edge into a
shadow plane bounding its shadow volume.

3) Project each shadow plane onto the µQuad. Com-
pute occlusion via lookup table, combine with con-
tributions from other edges.

As this intersection represents the inner loop, tight optimiza-
tion is vital for good performance. We describe these steps
in more detail below.

4.1 µQuad Construction
A µQuad is a simple construct: the projection of a pixel foot-
print onto the visible geometry’s tangent plane. Footprint

computation can be done on the fly during visibility test-
ing (if geometric normals are available), though we found
precomputation as part of G-buffer creation more efficient.

4.2 Shadow Plane Construction

For visibility, we test if points lie in each triangle’s shadow
volume rather than using explicit ray-triangle intersection.
A triangle’s shadow volume can be described as the in-
tersection region of four negative half planes: the triangle
plane, and the shadow planes for each triangle edge. For
point samples (as in Section 3), this means our visibility tests
require just four dot products.

For multisample shadows, we also use these shadow
planes. We compute them per primitive (i.e., in a geometry
shader) based on light position and two triangle vertices.

4.3 Visibility Computation

With the µQuad and shadow planes, we could compute per-
pixel shadow occlusion analytically. To allow easy accumu-
lation between subsequent triangles, we instead discretize
visibility as binary samples distributed over the µQuad. The
number and distribution of samples are developer specified.
We use 32 samples from a 2D Halton sampling.

To compute discrete visibility, we treat each of the four
planes independently. We project each shadow plane onto
the µQuad, giving a line. We parameterize this line using
polar coordinates (r, θ) relative to the center of the µQuad.
These coordinates are normalized as if on a canonical unit
square and then discretized to 5-bits in each r and θ.

We use this 10-bit lookup to index into a precomputed
table, returning 32 binary visibility samples (with ones rep-
resenting occlusion). We can bitwise AND the results from
the lookups together to obtain a µQuad’s visibility from the
triangle. This is similar to lookup tables from, for example,
Schwarz and Stamminger [30], Fiume and Fournier [31], and
Kautz et al. [32].

5 ALGORITHMIC COMPLEXITY

As with ray tracing, the key unit of work in irregular z-
buffer shadows is a ray-triangle (or frustum-triangle) visibil-
ity test. Simplistically, the algorithmic complexity is O(N)
for N visibility tests. These N tests are spawned when
a shader traverses the lists of potentially occluded pixels
for each light-space fragment (in pseudocode, step 3); each
pixel represents a ray (from Pi along ~Li) that is tested for
intersection with the rasterized triangle. Prior performance
analyses (e.g., Pan et al. [12]) reported N directly, and aimed
solely to reduce this value.

DecomposingN gives a more insightful bound,O(LaF),
where F is the total number of light-space fragments and La

is the average list length in light-space.
Consider the average list length La. We test visibility at

only eye-space pixels, so the number of IZB nodes depends
on eye-space resolution Res. Each pixel is entered into the
IZB once, so Res pixels go into a light-space resolution (Rls)
grid of lists; another useful decomposition is La ≈ Res/Rls.

However, for GPUs or similar single instruction, multi-
ple thread (SIMT) compute devices, not all parallel threads

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 5

Fig. 5. The input to our irregular z-buffer shadows is the eye-space
fragment positions, which can come from a z-prepass (left) or a G-buffer.
We compute a multisample visibility mask for each pixel (right), which is
consumed during final shading.

will have identical workloads. This divergence causes un-
derutilization as some threads wait for others to finish. In
these cases, N = LmF rather than LaF , where Lm is the
maximal light-space list length.

This means the performance can be improved by reduc-
ing the number of light-space fragments F , reducing light-
space list lengths La and Lm, and reducing the variance of
list lengths (i.e., causing Lm to approach La).

6 SYSTEM OVERVIEW

As discussed in Section 3, irregular z-buffer shadows have
three distinct phases: creating the irregular z-buffer, spawn-
ing triangle occlusion tests via light-space rasterization, and
rendering a final shadowed image. Figure 4 visually outlines
this process, describing inputs, outputs, and the light-space
data structure.

We efficiently implement these steps using six passes: an
eye-space z-prepass, bounding the scene’s visible regions,
creating the irregular z-buffer, a light-space culling prepass,
spawning triangle visibility tests, and the final render. These
are outlined in greater detail below.

6.1 Eye-Space Z-Prepass
To efficiently render antialiased shadows, we need to test
occluder visibility at (and only at) fragments visible in
the final rendering. Hence, creating an irregular z-buffer
requires knowing which samples to add.

Modern rendering engines often use a z-only prepass to
facilitate culling; this pass provides the required information
(depicted in Figure 5). Our prototype simultaneously creates
a G-buffer, used during our deferred final render phase.

Single sample shadows only require fragment depths.
To perform frustum intersection for antialiased shadows,
we add three floats to the G-buffer describing the µQuad
projection onto the tangent plane.

These three floats represent the distance from eye to
tangent plane at three of the four µQuad corners. This is suf-
ficient (when combined with fragment location and viewing
parameters) to reconstruct these three corner locations in the
shader and provides enough information to compute our
lookup table indices. Storing these three floats accelerates
visibility tests, but µQuads could be explicitly recomputed
if G-buffer space is tight.

Fig. 6. Light-space visualizations of intermediate IZB steps. (Left) a stan-
dard light-space shadow map for comparison. (Center) A visualization of
the irregular z-buffer, showing the length of lists in each light-space texel.
White light-space texels contain no visible eye-space fragments. Darker
pixels indicate longer lists, containing up to 100 fragments for the citadel
scene. (Right) To reduce work during light-space rasterization, we can
cull triangle fragments covering white texels – these spawn no visibility
tests. We create a z-buffer with 0 in these texels, and the furthest visible
fragment elsewhere.

6.2 Scene Bounds
As in shadow mapping, the light’s projection matrix needs
to tightly bound the scene. Poor bounds increase list length
variability (i.e., Lm increases). To avoid poor scene bounds,
we recompute the light’s projection matrix each frame so the
IZB contains only geometry visible in the z-prepass.

We use a persistent thread compute shader to loop
over the z-buffer from Section 6.1 to compute a bounding
box. This has cost dependent on screen resolution, though
the z-buffer can be coarsely sampled for improved speed.
Other approaches to bound the scene could be used instead,
including explicit bounds from the engine or scene graph or
min-max mipmaps [33] over the z-buffer. We did not explore
alternate approaches, as this step is not a major bottleneck
in most scenes.

6.3 Creating the Irregular Z-Buffer
We walk through the eye-space z-buffer, transforming each
pixel into light-space and inserting it into the appropriate
texel’s linked list, as outlined in Section 3 (and detailed in
Section 7.2). Figure 6 shows the light space structure created
for the Chalmers Citadel input from Figure 5.

The intuition: in a shadow map, pi pixels project into a
light space texel ti, which causes aliasing if pi > 1. In our
irregular z-buffer, texel ti contains an explicit list of these pi
pixels, allowing us to analytically compute visibility later.

Using multiple visibility samples per pixel can require
multiple IZB nodes per pixel. Unlike a point query, a µQuad
may project to multiple light-space texels; triangles touching
any of these texels could shadow the pixel. Naively, a n
sample per pixel shadow requires n IZB nodes per pixel.
However, since we need not insert a pixel redundantly into
light-space lists, if a µQuad projects to m light-space texels,
we need min(m,n) IZB nodes.

Based on an empirical observation about m for our
µQuads, Section 7.1 introduces an approximation using at
most eight (and averaging two) IZB nodes per pixel with
little quality impact.

6.4 Light-Space Culling Prepass
In Section 6.5 we spawn visibility tests via conservative ras-
terization. The GPU’s early-z hardware can accelerate this
process by culling triangle fragments covering empty pixel
lists or falling behind the furthest list node. Intuitively, this
provides frustum culling based on actual pixel geometry.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 6

Visibility mask on eye space grid

IZB nodes: stored on eye space grid

IZB head pointers: on

light space grid

Eye space z-prepass + triangle soup

Irregular Z-bu�er data structureIrregular Z-bu�er input Irregular Z-bu�er output

IZB creation: apply shadow map transform

to project pixels to light space. Add each

pixel to corresponding light space list.

Rasterize triangles in light space. Traverse list

in each covered texel. Test shadow visibility for

each listed pixel. Update shadow visibility mask. Light-space sample positions

Fig. 4. An overview of our irregular z-buffer implementation. We require an eye-space z-buffer plus triangle geometry as input; each pixel location is
transformed to light-space and added to the projected texel’s linked list. Triangles are rasterized over this light-space grid; each fragment traverses
its list and tests listed pixels for occlusion. When tests identify occlusion, the pixels’ visibility mask is updated. The final render pass consumes these
visibility masks to correctly shadow pixels. (Right) A visualization of the corresponding irregular light-space samples. Intensity represents number
of pixels projecting into a light-space texel (darker means more pixels, white means no pixels project to a texel).

Using early-z hardware requires a light-space z-buffer.
Section 6.3 could generate this as a side effect. But as that
pass runs in eye-space, standard raster operations cannot
output light-space depth. Given the GPU’s opaque depth
format, we had difficulty using global memory writes to
create a z-buffer usable by the early-z hardware.

This prepass essentially creates a stencil: setting depth to
0 in texels with empty lists and the distance to the furthest
IZB node elsewhere (see Figure 6). Except in our most trivial
scenes, hardware z-cull provides a substantial speedup (be-
tween 30 and 50%) as it reduces the number of fragments
F generated by rasterization and reduces variability in list
lengths (by skipping computations on lists of length zero).

6.5 Spawning Triangle Visibility Tests

Spawning and performing visibility tests represents our
system’s major cost. We conservatively rasterize triangles
over a light-space grid (shown in Figure 4). Conservative
rasterization is required, as pixels stored in the IZB may
lie anywhere within the volume represented by a texel;
triangles partially covering a texel may occlude an arbitrary
subset of its list.

Each light-space fragment traverses the entire texel list.
During traversal we load each eye-space pixel in the list,
perform a frustum-triangle visibility test, and atomically OR
the result into the pixel’s eye-space visibility mask.

A key bottleneck stems from thread divergence at this
step; since lists have variable length, some threads wait on
adjacent threads. For naive implementations, this wait can
be extreme; in certain views we observed 1000:1 variations
between adjacent list lengths.

6.6 Final Render

Section 6.5 performs shadow tests and stores results in a per-
pixel visibility mask. Our final render pass loads from the
G-buffer (Section 6.1) and this mask and performs Phong
shading modulated by the shadow mask.

Fig. 7. (Left) As a fragment’s tangent plane changes orientation, µQuads
elongate along only one axis (the other dimension depends on screen
resolution). (Right) This suggests sampling them one dimensionally; we
add from one to eight samples to the IZB depending on orientation.

7 IMPLEMENTATION DETAILS

Section 6 provides a high level description of our system,
but key aspects deserve greater explanation. First, we dis-
cuss how multisample shadows change our data structure.
Then we explore efficient layouts for the irregular z-buffer
data structure and outline some smaller optimizations that
significantly impact performance.

7.1 Simplifying IZBs for Multi-Sample Shadows
Moving to 32 spp shadows complicates our algorithm. The
key is that light-space rasterization must spawn frustum-
triangle tests (described in Section 4) for any triangle oc-
cluding a pixel. Since a µQuad has finite area, it projects
to a variable number of light-space texels; its pixel must be
added to each of those texels’ lists to avoid light leaking.

One expensive approach would rasterize µQuads in
light-space during IZB construction. Another method adds
all 32 subpixel visibility samples to the IZB. We initially
prototyped this sample-based insertion, though even with
optimization to avoid duplicate IZB entries it often adds 8
or more nodes to the IZB for each pixel in the final render.

Considering µQuads’ geometric behavior suggests a
simple approximation to improve performance. µQuads en-
large along eye-space silhouettes as ~N ·~V → 0 (see Figure 7).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 7

Fig. 8. (Left) The tentacles scene using our approximate insertion from
Section 7.1. (Right) Using an over-conservative, 1 pixel dilation elimi-
nates this light leaking.

By construction they only elongate in depth, remaining
constant width regardless of surface orientation. We treat
them as 1-dimensional samples. As µQuads elongate we
insert IZB samples along the pixel’s view ray (the µQuad
center), using between 1 and 8 samples.

This only approximates the irregular z-buffer. As µQuads
grow we miss inserting nodes in some light space texels,
introducing light leaks for small or distant occluders falling
between our approximate 1D samples (see Figure 8). A few
ways exist to reduce light leaks. The easiest is to closely
match eye- and light-space sampling rates, when our ap-
proximation works well.

When sampling rates cannot be exactly matched, another
way is to use an overly conservative rasterization in light-
space. Standard conservative rasterization effectively dilates
each triangle by 1

2 pixel (e.g., see [34]), but we use a 1 pixel
dilation for our conservative raster. The intuition: when do-
ing sphere-sphere intersections, you can either analytically
intersect two spheres or do a point-in-sphere test, testing the
center of sphere S1 against an artificially enlarged sphere S2

(with radius r1+r2). Since we reduced the dimension of the
µQuads, we compensate by slightly enlarging each triangle.

Given the complexity analysis in Section 5, this trade-
off may seem questionable. Reducing the number of IZB
nodes directly reduces list length La. Extra triangle dilation
increases our fragments F , but by a much smaller amount.
Approximate insertion averages two IZB nodes per pixel
compared to eight with the exact approach, for a 4× re-
duction in La; increasing dilation from 1

2 to 1 pixel only
increases F between 6–40%, giving a large net speedup.

Please note this insertion is approximate, but remaining
light leaking occurs in extreme cases and when parameters
have been poorly set. Figure 9 also shows remaining light
leaking for a very distant occluder when the IZB resolution
has been set way too high—though viewed in isolation an
inexperienced viewer may not easily identify which result
is correct.

7.2 Data Structure and Memory Layout
In any complex data structure, it is worth considering the
best layout for efficient construction and traversal. We ini-
tially prototyped a simple 2D grid of linked lists, allocating
nodes from a global node pool (see Figure 2). Each list
node contained two entries: a next pointer and a G-buffer
index (to fetch pixel data). But this structure needs two

Fig. 9. Our approximate insertion does not entirely eliminate light
leaks, especially with poorly chosen IZB resolution. (Left) The 750k
triangle YeahRight model using four 40962 IZB cascades rendered at
1920 × 1080. (Center) Zooming far away, with four 40962 cascades
casting shadows onto a roughly 1002 region introduces an extreme
sampling mismatch that still leaks light with our approximation. (Right)
Using only two 5122 cascades better matches image resolution and
removes noticeable light leaking.

synchronizations per insertion: a global atomic to find a free
node and a per texel atomic to update the head pointer.

We tried compacting our lists, similar to Sintorn et
al.’s [11] variable length arrays. This reduces memory con-
sumption by eliminating next pointers. But our experiments
consistently showed a performance drop of exactly the
compaction cost. We also tried sorting lists by distance to
the light; this reduced performance by roughly the sort cost.
This suggests either traversal order has little impact or we
sufficiently load the GPU to hide traversal latency.

But cutting node size is appealing, so we instead elimi-
nated the explicit G-buffer index by storing it implicitly. By
preallocating a screen-space grid of nodes, the node address
implicitly provides its G-buffer index (see Figure 4); each
node just contains a next pointer. In other words, the node
at index y · screenWidth+ x corresponds to the pixel (x, y)
on screen. Besides cutting list size in half and eliminating
explicit G-buffer indices, this provides other advantages. In-
serting list nodes no longer requires global synchronization,
as we directly map pixels 1:1 to node indices (though we still
need per-list synchronization to update each head pointer).
This roughly halves build cost and removes a memory
indirection during list traversal. As addresses directly map
to pixels, next pointers provide information to load the next
node and G-buffer data simultaneously.

For 32 spp shadows, each pixel corresponds to multiple
nodes. However we continue using this method, storing up
to 8 nodes per pixel. Since we allocate 8 nodes per pixel in
advance, this wastes some memory (roughly doubling the
memory of a naive linked list structure). But we felt the
improved performance was worth this moderate memory
increase.

7.3 Light-Space Texture Resolution

As in shadow maps, selecting the correct light-space resolu-
tion is important. Unlike shadow maps, resolution does not
impact quality but it does affect performance.

Consider IZB’s O(LaF) complexity. Halving resolution
grows La by 4×while lowering F by 4×, suggesting a mini-
mal performance impacts. But conservative raster generates
extra fragments, which has larger impact at lower resolu-
tions. Larger resolutions increase memory consumption for
the light-space grid, though the number of IZB nodes is
largely invariant with light-space resolution.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 8

Considering our goals, we want neither high La nor
lots of fragments testing empty lists. This suggests closely
matching light- and eye-space resolutions. Early tests
showed a 20482 head texture worked well for all scenes at
1920 × 1080, though later experiments (Figure 14) suggest
the sweet spot varies from 14002 to 25002.

7.4 Matching Sampling Rates: Cascades
Ideally, we would match eye- and light-space sampling 1:1
so each triangle fragment spawns exactly one visibility test.
Shadow map research has explored this sampling problem
for decades, suggesting various methods to approach our
ideal sampling: perspective [19], logarithmic [35], cascaded
[36], and sample distribution shadow maps (SDSMs) [4] all
improve sampling. For our purposes, perspective shadow
maps have hard to control singularities and logarithmic
approaches require non-linear rasterization. However, cas-
cades give better sampling with manageable overhead and
SDSMs provide automatic partitioning.

Adding cascades is straightforward, though it affects
multiple steps of our algorithm. Our extents pass not only
bounds the entire scene, but also splits it into multiple
cascades with Lauritzen et al.’s [4] logarithmic partitioning
and individually bounds each cascade.

We generate a separate IZB for each cascade. Creation
of cascaded IZBs occurs in parallel, as each cascade can
be defined containing a unique set of IZB samples. This
is trivial for single sample shadows, but requires care for
multisampled shadows to ensure µQuads that span cascade
boundaries are split between them correctly. We create all
IZBs into a single 2D texture array and also perform the
light-space culling prepass (Section 6.4) in parallel into an
array of depth textures.

Light-space rasterization needs to occur over each IZB
to accumulate full visibility. We naively use one render pass
per cascade. Using a single render pass to route primitives to
the appropriate cascade could further improve performance.

Cascades’ divergence reduction pays for the overhead
of rerasterizing geometry (see Figure 10). Usually, two cas-
cades sufficiently smooth over performance cliffs due to
sudden changes in divergence. For modern game scenes,
moving to three or four cascades slightly reduces average
performance but provides tighter bounds on performance
variability. For larger CAD scenes, moving beyond two
cascades does not provide sufficient benefit to overcome the
extra overhead of rerasterizing geometry additional times.

7.5 ~N · ~L Culling
Standard lighting models trivially shadow when ~N ·~L ≤ 0.
As this term already shadows backfacing pixels, their vis-
ibility mask can be left fully lit. Not adding pixels with
~N ·~L ≤ 0 (for either shading or geometry normals) to the IZB
reduces La. This also avoids a common problem along light
silhouettes where geometric and shading normals provide
different shadow terms. Adding this culling consistently
improves performance 10-15%.

7.6 Early Out: IZB Node Removal
While testing visibility, we often determine a pixel has
become fully shadowed. Occluders rasterized later in the

0%

2%

4%

6%

8%

10%

12%

14%

2 4 6 8 10 12
0%

2%

4%

6%

8%

10%

12%

14%

2 4 6 8 10 12

 Bungie Terrain

 Ruined Building

 Tentacles

 Hairball

 GeeBee

Average List Length in Warp Average List Length in Warp

P
er

ce
n

t
o

f L
ig

h
t-

S
p

a
ce

 W
a

rp
s

Without Cascades With Four Cascades

Fig. 10. A comparison of warp divergence in multiple scenes with and
without cascades, with graphs showing the average lengths of IZB
nodes traversed by threads in a warp. Since the number of light-space
warps varies greatly between scenes, we normalize as a percentage
of all warps. A key take away: in complex scenes without cascades,
over 10% of warps average over 10 traversal steps per thread. With four
cascades, virtually none average over 10 traversal steps in any scene.

frame can have no additional impact, so spawning addi-
tional frustum-triangle tests for this pixel is wasteful. This
suggests removing fully shadowed pixels from IZB lists
(analogous to ray tracing with “any hit” rays).

Importantly, node removal requires no atomic opera-
tions. Race conditions can occur, but at worst cause extra
visibility tests on already-shadowed pixels (after which we
retry removal). Node removal provides a 10-15% perfor-
mance win despite additional logic and memory operations
in the inner traversal loop.

7.7 Memory Synchronization: Unchanged Masks
Visibility tests are inexpensive relative to a GPU’s maximum
theoretical performance. Memory latency, throughput, and
synchronization are thus key bottlenecks.

One synchronization point is a pixel’s visibility mask;
triangles testing visibility at the same pixel need to atomi-
cally combine results to avoid races. Hence, mask updates
should only occur if a triangle changes the existing visibility.
This requires loading the prior mask for comparison, but
avoiding contention provides up to a 14% speed boost.

7.8 Latency Hiding: Software Pipelining
When traversing a list of IZB nodes, the inner loop: loads the
next node, loads its pixel data, performs a visibility test, and
updates the visibility mask. This forms a dependency chain,
with long memory latencies between tasks. The GPU may be
unable to hide all these latencies. Fortunately we can apply
software pipelining, loading the next node and computing
G-buffer coordinates in the prior loop iteration. This hides
latency and improves speed 5-15%. Pushing visibility mask
updates to the next iteration may be a further win.

8 ALPHA MAPPED TEXTURES IN IZBS

Alpha mapped textures that modulate geometric trans-
parency on a per-texel basis are a vital part of most game
content today. Prior papers on irregular z-buffer shadows
generally avoid dealing with alpha mapped triangles, per-
haps since a discretely sampled alpha inherently reintro-
duces aliasing, which goes against the goals of ”alias free”
techniques.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 9

Fig. 11. Scenes used to test our system include: Chalmers Villa, GeeBee Plane, Hairball, Epic Citadel, Bungie Terrain, Bungie Building. Timings
give total frame time using two 20482 cascades, rendered at 1920× 1080. Some scenes courtesy Epic Games and Bungie, Inc.

The results of our per pixel shadow tests are stored
in a visibility mask buffer (see Figure 5), but to enable
efficient memory writes in this buffer we always store
multiples of 32 bits for each pixel. We realized we could use
these bits to represent opacity in addition to just geometric
visibility. A common way of handling transparency for
primary visibility is alpha-to-coverage, and we observe a
similar approach can be used here. In other words, we first
perform the visibility tests described in prior sections to
compute geometric coverage, then determine the occluder’s
opacity by indexing into its alpha texture, perform alpha-
to-coverage on this opacity value to get a 32-bit opacity
mask, and finally combine this (via a bitwise AND) with
our geometric coverage before outputting the result to our
visibility buffer.

8.1 Determining Per-Query Alpha

To enable alpha mapped textures, we must ask how each
IZB node determines the alpha of an occluding triangle.
We see two ways to determine alpha for these visibility
queries: a fast or a high quality way. For quick computation,
the alpha texture can be queried once per light-space texel
prior to traversing the list of IZB nodes. This assumes alpha
remains constant over a light-space texel and reintroduces
visible aliasing based on the light-space grid resolution. We
implemented this approach.

A higher quality test queries the alpha texture once per
IZB node. This allows each frustum-triangle visibility test
to intersect the occluder with a different footprint, using
varying texture coordinate and LoD bias to index into the
alpha map. However, this adds substantial cost: a per-query
footprint computation and alpha texture access.

9 RESULTS AND DISCUSSION

Our system uses OpenGL 4.4 with various extensions. We
tested on various NVIDIA GPUs and an AMD Radeon 290X
to ensure cross-platform execution. Unless otherwise speci-
fied, we report times on a GeForce Titan X at 1920×1080 and

Fig. 12. The 12.3 million triangle UNC Powerplant model running at
3840× 2160 in under 53 ms for 32 sample per pixel shadows. We zoom
twice to highlight the shadow quality.

rely on three NVIDIA-specific extensions for performance:
NV conservative raster, NV conservative raster dilate, and
NV geometry shader passthrough, enabling GPU-accelerated
conservative rasterization not yet available elsewhere.

Figures 1, 11, 12, and 15 show our test scenes. Table 1
gives performance breakdowns using consistent rendering
parameters; these do not provide optimal performance in
all scenes, but provide reasonably high performance across
our test suite.

Table 1 provides data for various high-level observa-
tions. First, most steps (i.e., from Section 6) have effectively
constant cost, except for G-buffer creation and light-space
rasterization (when we perform visibility tests). Computing
scene extents requires a pass over all G-buffer samples
running Lauritzen et al.’s [4] logarithmic partitioning to
delineate cascades; this cost depends on screen resolution.
Section 6.4 notes initializing the light-space z-buffer for
culling may be unnecessary; however, it only requires a copy
into our light-space z-buffer, which is fairly inexpensive.
Our final render loads the G-buffer and visibility mask and
applies a simple shading model.

IZB creation costs vary depending on the number of
nodes inserted to our linked lists and how much atomic

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 10

TABLE 1
(1st row) Performance breakdown for individual algorithmic steps for 32 spp (and 1 spp) IZB hard shadows. To allow comparison all scenes use
identical, rather than optimal, settings: 1920× 1080 resolution, 2 cascades each containing 20482 lists of IZB nodes, and using all optimizations.
(2nd row) Explicit measures of the work done, including light-space fragment counts (F), average tests per list (La), and total frustum-triangle (or

ray-triangle) tests performed (N). Based on those counts, we provide average visibility tests performed per shaded pixel in the final rendering.
(3rd row) Statistics for speed of light tests, which enumerate all visibility tests then execute them fully coherently (no divergence). (4th row) We
performed our frustum tracing through a fast bounding volume hierarchy [22] to compare the number of visibility tests with those we generate.

Algorithmic Step Times Chalmers Villa,

89k
Bungie Building,

255 k Epic Citadel,

374 k Chalmers Citadel,

613 k Bungie Terrain,

1.5 M Hairball,

2.9 M Tentacles,

3.8 M GeeBee Plane,

11.7 M Powerplant,

12.3 M

G-buffer creation 0.5 (0.3) 0.8 (0.3) 0.6 (0.3) 0.7 (0.4) 1.2 (0.8) 1.5 (1.1) 1.1 (1.0) 5.4 (5.3) 4.1 (3.9)
Z-extent bounds 0.3 (0.3) 0.3 (0.3) 0.2 (0.2) 0.3 (0.3) 0.3 (0.3) 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.3 (0.3)
Create IZB 0.6 (0.3) 0.7 (0.4) 0.6 (0.4) 0.6 (0.4) 0.7 (0.4) 0.7 (0.4) 0.6 (0.4) 0.6 (0.3) 0.8 (0.4)
Z-cull setup 0.5 (0.5) 0.3 (0.3) 0.3 (0.3) 0.3 (0.3) 0.3 (0.3) 0.3 (0.3) 0.3 (0.3) 0.3 (0.3) 0.3 (0.3)
Raster tris over IZB 1.5 (0.5) 3.7 (1.7) 3.7 (1.4) 5.7 (2.4) 6.6 (3.1) 12.4 (4.4) 7.9 (4.7) 38.6 (19.3) 26.1 (14.4)
Final render 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.1 (0.1) 0.3 (0.2) 0.2 (0.2)
Total Time (msec) 3.8 (2.2) 6.4 (3.7) 6.0 (3.2) 8.1 (4.3) 9.7 (5.5) 15.8 (7.0) 10.9 (7.2) 46.0 (26.0) 32.6 (20.1)

Measures of Work Performed In Our System for 32 spp (and 1 spp)
Light space frags, F (×106) 2.2 (0.9) 17.5 (9.5) 6.4 (4.1) 8.6 (5.4) 31.0 (15.2) 55.0 (15.5) 6.8 (1.7) 30.8 (10.8) 45.6 (17.8)
Visibility tests, N (×106) 4.9 (1.6) 17.6 (8.9) 12.5 (8.0) 17.8 (9.9) 36.7 (15.3) 21.3 (4.6) 8.1 (1.7) 64.1 (16.9) 25.6 (6.4)
Avg tests per tri frag, La 2.2 (1.7) 1.0 (0.9) 1.9 (2.0) 2.1 (1.8) 1.2 (1.0) 0.4 (0.3) 1.2 (1.0) 2.1 (1.6) 0.6 (0.4)
Avg tests per final pixel 3.0 (1.0) 8.5 (4.3) 7.8 (5.0) 9.9 (5.5) 17.7 (7.3) 13.2 (2.8) 7.0 (1.5) 41.9 (10.9) 12.9 (3.2)

Speed of Light Tests: Frustum Tracing with No Divergence or Irregular Z-Buffer Traversal
SoL visibilty tests (×106) 6.8 20.6 19.9 31.8 40.7 83.0 9.6 – 37.6
SoL visiblity cost (msec) 1.3 6.1 2.5 3.8 9.2 31.5 2.6 – 9.5
SoL tests per ms (×106) 5.2 3.4 8.0 8.4 4.4 2.6 3.7 – 4.0
IZB tests per ms (×106) 3.3 4.7 3.4 3.1 5.6 1.7 1.0 1.7 1.0

Compare Data Structure Traversal: Bounding Volume Hierarchy (in a Ray Tracer) Versus Irregular Z-Buffer (with a Rasterizer)
BVH nodes tested (×106) 11.0 15.1 14.3 11.6 12.9 – – – –
BVH visibility tests (×106) 10.7 14.6 14.1 11.3 12.4 – – – –
Avg tests per pixel (BVH) 14.6 8.8 9.3 7.3 7.1 – – – –
Avg tests per pixel (IZB) 3.0 8.5 7.8 9.9 17.7 13.2 7.0 41.9 12.9

contention occurs. Incoherent geometry (hairball and tenta-
cles) and finely tessellated models (GeeBee and powerplant)
exhibit slightly lower performance. For single sample shad-
ows, we add just one IZB node per pixel. 32 sample shad-
ows insert roughly twice as many nodes (see Section 7.1),
increasing atomic contention. Still, IZB creation costs remain
remarkably consistent across all our test scenes.

9.1 Cost of Visibility Tests

Our major cost is light-space rasterization (Section 6.5),
which tests µQuad visibility. Theoretically, cost varies lin-
early with additional frustum-triangle tests, though Table 1
shows this correspondence breaks in practice as GPU uti-
lization varies between scenes. For game-like scenes with a
mix of large and small polygons, we average between 3 and
4 million frustum-triangle tests per millisecond. For more
complex scenes, we average between 0.6 and 1.5 million
frustum-triangle tests per millisecond.

Early in development, we ran ”speed of light” tests that
explicitly enumerated all required frustum-triangle visibility
tests then performed these tests in parallel using a compute
shader. This requires 2+ GB to store all required visibility
tests, but allows full GPU utilization. The 100× cost differ-
ence between speed of light and early prototypes motivated
our work. Table 1 provides speed of light numbers and
shows we now average 67% the speed of fully coherent
queries. In fact, in two scenes we exceed our speed of light;

TABLE 2
Total render times for some scenes from Table 1, shown with and
without hardware-accelerated conservative rasterization. We use

optimal settings for these scenes, so times vary from Table 1.

32 spp shadows 1 spp shadows
Scenes With Without With Without
Villa 3.4 ms 3.9 ms 2.0 ms 2.2 ms
Citadel 8.1 ms 10.1 ms 4.3 ms 5.1 ms
Hairball 15.4 ms 30.8 ms 6.8 ms 12.7 ms
Tentacles 10.9 ms 30.6 ms 7.2 ms 15.7 ms
Powerplant 32.2 ms 91.3 ms 20.0 ms 49.7 ms

we attribute that to the overhead of reading 2+ GB lists of
visibility queries, which the irregular z-buffer need not do.

Note: our speed of light test performed all visibility
queries in parallel, disallowing culling and early removal
of fully occluded pixels. This explains the strictly larger
number of tests quoted (see Table 1) and provides a measure
of improvement when using these optimizations: up to 4×.

9.2 Hardware-Accelerated Conservative Rasterization

IZB shadows require conservative rasterization. New
DirectX12-class GPUs include hardware accelerated conser-
vative raster, and newer NVIDIA GPUs further accelerate
the added triangle dilation discussed in Section 7.1.

Table 2 shows the speed gains from hardware acceler-
ation. The gains can exceed 3x in scenes with many small
triangles, though more typical game scenes gain 10–20%.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 11

G Bu�er Scene Extents

IZB Creation Cull Setup

IZB Raster Final Render

m
il

li
s

e
c

o
n

d
s

25

20

15

10

5

0
0 36001800900 2700

frame in animation

m
il

li
s

e
c

o
n

d
s

Final Render

IZB Raster

Cull Setup

IZB Creation

Scene Extents

G Bu�er

35

30

25

20

15

10

5

0

3840 x 2160

2560 x 1440

1920 x 1080

1600 x 900

1366 x 768

1280 x 720

960 x 540

800 x 450

screen resolution

Fig. 13. Performance variation in the Chalmers Citadel (left) with varying
render resolution and (right) over a 3600 frame animation at 1920×1080.
Timings made on a GeForce 980 GTX.

m
il

li
se

co
n

d
s

200

160

120

80

40

0

m
il

li
se

co
n

d
s

0

10

40

20

30

32 spp Shadows 1 spp Shadows

light space resolution light space resolution
256 2564096 40961024 10242048 3072 30722048

Chalmers Villa Bungie Building

TentaclesBungie Terrain

Epic Citadel

Powerplant

Chalmers Citadel

GeeBee Plane

Hairball

Fig. 14. Performance variation for (left) 32 spp and (right) 1 spp shadows
with varying cascade resolutions. Timings represent just the light-space
rasterization step (on a GeForce 980 GTX), using 4 cascades with
resolution between 2562 and 40962.

Roughly half this performance win comes from the new
hardware raster (which generates fewer fragments than our
software implementation, from Hasselgren et al. [34]), with
the rest coming from simplified geometry shaders more
amenable to hardware streaming.

9.3 Performance Scaling: Screen Resolution

Interestingly, Figure 13 shows non-linear performance scal-
ing with screen resolution. Scaling from 1920 × 1080 to
3840 × 2160 roughly increases cost by 2× rather than the
expected 4×. This likely stems from our culling, specifically
the node removal in Section 7.6, which reduces the penalty
for longer linked lists. As fully occluded pixels are quickly
eliminated, increasing resolution affects performance sub-
linearly.

This also varies based on geometric complexity: while
the citadel from Figure 13 takes twice as long at 3840×2160
as 1920×1080, the powerplant only increases in cost by 60%,
and the tentacles by 30%. Though this effect may come from
reduced divergence, as surfaces poorly sampled at lower
resolution are more coherent when densely sampled.

9.4 Performance Scaling: Cascade Resolution

Figure 14 tracks performance under varying light-space
resolution. Larger resolutions distribute IZB nodes among
more lists (reducing La), but also cause rasterization to emit
more fragments F . For single sample shadows, these ef-
fects largely cancel out and performance remains consistent
for sufficiently large cascades. For multisample shadows,
higher resolutions cause µQuads to project to more tex-
els (requiring additional IZB nodes); this distinctly lowers

Fig. 15. The Epic Foliage Map with (left) and without (right) support for
alpha mapped opacity rendered in 17.7 and 14.8 ms, respectively.

performance at higher resolutions. The sweet spot ranges
from 14002 to 25002, and in moderately complex scenes
performance varies only slightly through this range.

9.5 GPU Divergence

We instrumented our code to count the number of visibility
tests done per frame, per warp, and per thread and ran
these tests over various scenes. Figure 10 compares average
visibility tests per light-space fragment (i.e., per thread)
without cascades and using four cascades.

Since absolute fragment counts vary between scenes and
frames, we show what percent have various workloads.
Ideally, we always perform one visibility test per thread.
Across our scenes, adding cascades moved us much closer
to that ideal. Without cascades, our workload has a very
long tail; many warps average over 100 tests per thread.
With cascades virtually zero threads average over 10 tests
per thread, even in our most complex scenes. We see similar
reductions in work variance within a warp, with cascades
giving a much more uniform work distribution.

On the Chalmers Villa scene we averaged 2.9 frustum-
triangle visibility tests per thread without cascades. With 4
cascades, we averaged 1.5 visibility tests per thread. Due to
rerendering into each cascade, we test 25% more fragments
but it only takes 61% of the total time. This improves the
throughput of visibility tests per millisecond by 2×. For
difficult views, this can reach 10 or 100×.

9.6 Alpha Mapped Textures

Figures 1 and 15 show alpha mapped textures in our system.
Our prototype uses the simple alpha query from Section 8
that reintroduces aliasing based on IZB resolution, as shown
in Figure 1. Since good IZB performance already requires a
good match between eye-space and light-space sampling,
we believe this alpha aliasing will remain acceptable, espe-
cially since simple interpolation should reduce the blocking
artifacts seen at lower resolutions.

Alpha mapping shadows reduce performance, due to
additional memory traffic. Our naive prototype queries
alpha for all surfaces, even those without transparency.
Less performance loss should occur when using separate
shaders, especially if all opaque triangles are rasterized prior
to those with transparency.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 12

Frustum Traced IZB

OptiX

OptiX Prime

500

400

300

200

100

0
0 360180

frame in animation

m
il

li
s

e
c

o
n

d
s

Fig. 16. (Left) Performance over an animation compared with a 32 spp
OptiX ray tracer (on a Quadro K6000). (Right) A quality comparison from
one animation frame.

9.7 Data Structure Quality

Fundamentally, the irregular z-buffer is an acceleration
structure for visibility queries, akin to a ray tracer’s bound-
ing volume hierarchy. An interesting question is then how
these acceleration structures compare. We implemented our
frustum tracing in Optix and OptiX Prime (a wavefront
based OptiX API [37]), with performance and quality com-
parisons depicted in Figure 16.

For ray traced quality comparisons, note the OptiX
implementation uses a different sub-pixel sampling pat-
tern and world-space epsilon value. This leads to slight
differences in antialiasing patterns on branches and some
missing shadows in the OptiX version, where occluders are
mistakenly skipped due to a large epsilon. OptiX also super-
samples pixels, allowing partial illumination on branches
that we render as fully shadowed.

More interesting is an explicit comparison of visibility
tests and traversal steps required, as ray tracers and raster-
izers currently have vastly different levels of hardware ac-
celeration. We implemented our frustum-tracing algorithm
in a beam tracer using a state of the art bounding volume
hierarchy [22]. The bottom row in Table 1 shows the number
of visibility tests, N . The optimized IZB performs a similar
number of tests as a high quality BVH, and even in outlying
cases the number of tests are within a factor of 3×. This is
surprisingly good performance considering we rebuild our
IZB dynamically each frame in under 1 ms.

9.8 Specific Comparisons to Prior Work

Beyond ray tracers, our work shares similarities with other
techniques. Lecocq et al. [38] and Sen et al. [39] augment
a shadow map with geometry, which can give subpixel
accurate shadows. But they fail in complex texels when
multiple triangles or silhouettes intersect. Irregular z-buffers
seamlessly handle these cases.

Despite the name, we share similarities with per-triangle
shadow volumes [8], [40]; our light-space rasterization and
traversal essentially spawns per-triangle shadow volumes,
but Sintorn et al.’s data structure more closely resembles
Aila and Laine’s [9] space partitioning. Because they use
GPU compute, they implement a complex space partitioning
to achieve culling similar to our hardware accelerated z-cull.

Key differences from prior irregular z-buffers include:
our use of shadow map techniques like cascades to improve

performance, culling via hardware z-cull, IZB node re-
movals to avoid redundant tests on shadowed pixels, and an
efficient way to build and traverse an IZB for multisample
shadows.

9.9 Summary of Key Insights
Our key insight is the duality between shadow map quality
and irregular z-buffer performance. Shadow maps alias
where a texel projects onto multiple pixels. An irregular z-
buffer stores per-texel lists of potentially occluded pixels.
This enables IZBs to avoid all aliasing from eye- to light-
space resampling in exchange for speed variability from
variable length lists, i.e., where shadow maps have artifacts
IZBs need more computation.

With this in mind, we explored various techniques to
reduce visibility tests and mitigate GPU thread divergence.
The most surprising observation leverages existing shadow
mapping techniques, like cascades, to improve the perfor-
mance of irregular z-buffering. However, we also showed
that both raster techniques (z-culling) and ray tracing tech-
niques (any-hit queries) work to improve our performance.

10 CONCLUSIONS

We designed a system that renders antialiased shadows in
real time for both modern game content and CAD models.
Adding 32 samples for subpixel visibility costs just two
times more than a single sample. Quality is very robust and
avoids the need to find a shadow map bias by trial and error.

We designed primarily for accuracy but introduced one
optimization for multisample shadows that can introduce
light leaks for small, distant occluder triangles. A modified
light-space parameterization may eliminate this leaking, but
developers needing quality can also skip this optimization.

11 FUTURE WORK

We hope to spur further exploration into real-time ana-
lytic shadows. A number of improvements still remain: a
more programmable depth test could enable better culling
during light space rasterization and applying conservative
rasterization to all triangles seems wasteful (but robustly
identifying silhouettes is challenging). Additionally, we did
not fully explore ways to avoid inserting nodes into the
irregular z-buffer. For instance, when inserting pixels into
light-space lists we may find geometry that fully occludes a
texel; we could avoid inserting more distant geometry.

This paper focused exclusively on hard shadows, though
many applications today want soft shadows so handling
area lights is important. Either an explicit analytic solution
or an approximate image-space filtering approach similar to
percentage closer soft shadows [41] would be valuable.

ACKNOWLEDGMENTS

Thanks to Bungie, Epic Games, and Erik Sintorn for gen-
erously sharing models and other assets. Many others
at NVIDIA provided helpful suggestions, discussion, and
brainstorming throughout this project, including: Anjul Pat-
ney, Henry Moreton, Cyril Crassin, Dave Luebke, Marco
Salvi, Eric Enderton, and Craig Kolb.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XXXX 2016 13

REFERENCES

[1] C. Wyman, R. Hoetzlein, and A. Lefohn, “Frustum-traced raster
shadows: Revisiting irregular z-buffers,” in Symposium on Interac-
tive 3D Graphics and Games, 2015, pp. 15–23.

[2] L. Williams, “Casting curved shadows on curved surfaces,” in
Proceedings of SIGGRAPH, 1978, pp. 270–274.

[3] T. Annen, T. Mertens, H.-P. Seidel, E. Flerackers, and J. Kautz,
“Exponential shadow maps,” in Graphics Interface, 2008, pp. 155–
161.

[4] A. Lauritzen, M. Salvi, and A. Lefohn, “Sample distribution
shadow maps,” in Symposium on Interactive 3D Graphics and Games,
2011, pp. 97–102.

[5] T. Whitted, “An improved illumination model for shaded display,”
Communications of the ACM, vol. 23, no. 6, pp. 343–349, June 1980.

[6] F. Crow, “Shadow algorithms for computer graphics,” in Proceed-
ings of SIGGRAPH, 1977, pp. 242–248.

[7] G. S. Johnson, J. Lee, C. A. Burns, and W. R. Mark, “The irregular z-
buffer: Hardware acceleration for irregular data structures,” ACM
Transactions on Graphics, vol. 24, no. 4, pp. 1462–1482, Oct. 2005.

[8] E. Sintorn, V. Kämpe, O. Olsson, and U. Assarsson, “Per-triangle
shadow volumes using a view-sample cluster hierarchy,” in Sym-
posium on Interactive 3D Graphics and Games, 2014, pp. 111–118.

[9] T. Aila and S. Laine, “Alias-free shadow maps,” in Eurographics
Symposium on Rendering, 2004, pp. 161–166.

[10] J. Arvo, “Alias-free shadow maps using graphics hardware,”
Journal of Graphics Tools, vol. 12, no. 1, pp. 47–59, 2007.

[11] E. Sintorn, E. Eisemann, and U. Assarsson, “Sample based visi-
bility for soft shadows using alias-free shadow maps,” Computer
Graphics Forum, vol. 27, no. 4, pp. 1285–1292, 2008.

[12] M. Pan, R. Wang, W. Chen, K. Zhou, and H. Bao, “Fast, sub-pixel
antialiased shadow maps,” Computer Graphics Forum, vol. 28, no. 7,
pp. 1927–1934, 2009.

[13] E. Eisemann, M. Schwarz, U. Assarsson, and M. Wimmer, Real-
Time Shadows. A. K. Peters, Ltd., 2011.

[14] A. Woo and P. Poulin, Shadow Algorithms Data Miner. A. K.
Peters/CRC Press, 2012.

[15] M. McGuire, J. F. Hughes, K. Egan, M. Kilgard, and C. Everitt,
“Fast, practical and robust shadows,” NVIDIA Corporation, Tech.
Rep., Nov 2003.

[16] D. B. Lloyd, J. Wendt, N. Govindaraju, and D. Manocha, “CC
shadow volumes,” in Eurographics Symposium on Rendering, 2004,
pp. 197–206.

[17] W. Reeves, D. Salesin, and R. Cook, “Rendering antialiased shad-
ows with depth maps,” in Proceedings of SIGGRAPH, 1987, pp.
283–291.

[18] W. Donnelly and A. Lauritzen, “Variance shadow maps,” in Sym-
posium on Interactive 3D Graphics and Games, 2006, pp. 161–165.

[19] M. Stamminger and G. Drettakis, “Perspective shadow maps,” in
Proceedings of SIGGRAPH, 2002, pp. 557–562.

[20] R. Fernando, S. Fernandez, K. Bala, and D. Greenberg, “Adaptive
shadow maps,” in Proceedings of SIGGRAPH, 2001, pp. 387–390.

[21] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S. Jung, S. Lee, H.-S.
Park, and T.-D. Han, “Sgrt: A mobile gpu architecture for real-time
ray tracing,” in High-Performance Graphics, 2013, pp. 109–119.

[22] T. Aila, T. Karras, and S. Laine, “On quality metrics of bounding
volume hierarchies,” in High-Performance Graphics, 2013, pp. 101–
107.

[23] M. Mittring, “Real-time ray traced shadows,”
http://kosmokleaner.wordpress.com/2014/09/26/, 2014.

[24] L. Carpenter, “The a-buffer, an antialiased hidden surface
method,” in Proceedings of SIGGRAPH, 1984, pp. 103–108.

[25] J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz, “Real-time
concurrent linked list construction on the gpu,” Computer Graphics
Forum, vol. 29, no. 4, pp. 1297–1304, 2010.

[26] T. Saito and T. Takahashi, “Comprehensible rendering of 3-d
shapes,” in Proceedings of SIGGRAPH, 1990, pp. 197–206.

[27] P. S. Heckbert and P. Hanrahan, “Beam tracing polygonal objects,”
in Proceedings of SIGGRAPH, 1984, pp. 119–127.

[28] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, I. Wald,
and P. Shirley, “Packet-based Whitted and Distribution Ray Trac-
ing,” in Graphics Interface, 2007, pp. 177–184.

[29] R. Overbeck, R. Ramamoorthi, and W. R. Mark, “A real-time beam
tracer with application to exact soft shadows,” in Eurographics
Symposium on Rendering, 2007, pp. 85–98.

[30] M. Schwarz and M. Stamminger, “Bitmask soft shadows,” Com-
puter Graphics Forum, vol. 26, no. 3, pp. 515–524, 2007.

[31] E. Fiume and A. Fournier, “A parallel scan conversion algorithm
with anti-aliasing for a general-purpose ultracomputer,” in Pro-
ceedings of SIGGRAPH, 1983, pp. 141–150.

[32] J. Kautz, J. Lehtinen, and T. Aila, “Hemispherical rasterization for
self-shadowing of dynamic objects,” in Eurographics Symposium on
Rendering, 2004, pp. 179–184.

[33] A. Tevs, I. Ihrke, and H.-P. Seidel, “Maximum mipmaps for fast,
accurate, and scalable dynamic height field rendering,” in Sympo-
sium on Interactive 3D graphics and games, 2008, pp. 183–190.

[34] J. Hasselgren, T. Akenine-Moller, and L. Ohlsson, GPU Gems 2.
Addison-Wesley, 2005, ch. Conservative Rasterization, pp. 677–
690.

[35] D. B. Lloyd, N. K. Govindaraju, C. Quammen, S. E. Molnar,
and D. Manocha, “Logarithmic perspective shadow maps,” ACM
Transactions on Graphics, vol. 27, no. 4, pp. 106:1–106:32, 2008.

[36] D. B. Lloyd, D. Tuft, S.-e. Yoon, and D. Manocha, “Warping
and partitioning for low error shadow maps,” in Eurographics
Symposium on Rendering, 2006, pp. 215–226.

[37] S. Laine, T. Karras, and T. Aila, “Megakernels considered harmful:
Wavefront path tracing on gpus,” in High-Performance Graphics,
2013, pp. 137–143.

[38] P. Lecocq, J.-E. Marvie, G. Sourimant, and P. Gautron, “Sub-pixel
shadow mapping,” in Symposium on Interactive 3D Graphics and
Games, 2014, pp. 103–110.

[39] P. Sen, M. Cammarano, and P. Hanrahan, “Shadow silhouette
maps,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 521–526,
Jul. 2003.

[40] E. Sintorn, O. Olsson, and U. Assarsson, “An efficient alias-free
shadow algorithm for opaque and transparent objects using per-
triangle shadow volumes,” ACM Transactions on Graphics, vol. 30,
no. 6, pp. 153:1–153:10, 2011.

[41] R. Fernando, “Percentage-closer soft shadows,” in ACM SIG-
GRAPH Sketches, 2005, p. 35.

Chris Wyman is a Senior Research Scientist
in NVIDIA’s real-time rendering research group
located in Redmond, WA. Prior to joining the
team in Redmond, he was a Visiting Professor at
NVIDIA and an Associate Professor of Computer
Science at the University of Iowa. He earned a
PhD in computer science from the University of
Utah and a BS in mathematics and computer
science from the University of Minnesota. Re-
cent research interests include efficient shad-
ows, antialiasing, and participating media, but

his interests span the range of real-time rendering problems from light-
ing to global illumination, materials to color spaces, and optimization to
hardware improvements.

Rama Hoetzlein is an artist and computer sci-
entist, having completed a dual BFA and BA at
Cornell University in 2001 and a PhD in Media
Arts and Technology at the University of Cali-
fornia Santa Barbara in 2010 with research in
procedural modeling and systems for creative
interaction. He was co-founder of the Game De-
sign Initiative at Cornell, and Assistant Professor
of Computer Graphics at Medialogy in Copen-
hagen, Denmark in 2011. Rama currently works
at NVIDIA with research interests in fluid simula-

tion and volume rendering.

Aaron Lefohn is Director of Real-Time Ren-
dering Research at NVIDIA, has led real-time
rendering and graphics programming model re-
search teams for over six years, and has produc-
tized many research ideas into GPU hardware
and GPU APIs. Prior to joining NVIDIA, Aaron
led a real-time rendering and graphics program-
ming model research team at Intel. He joined
Intel in 2007 via Intel’s acquisition of the graph-
ics startup, Neoptica. Before Neoptica, Aaron
worked in rendering R&D at Pixar Animation Stu-

dios, creating interactive rendering tools for film artists. Aaron received
his PhD in computer science from UC Davis and his MS in computer
science from University of Utah.

