
CHAPTER 22

WEIGHTED RESERVOIR SAMPLING:
RANDOMLY SAMPLING STREAMS
Chris Wyman
NVIDIA

ABSTRACT

Reservoir sampling is a family of algorithms that, given a stream of N
elements, randomly select a K-element subset in a single pass. Usually, K is
defined as a small constant, but N need not be known in advance.

22.1 INTRODUCTION

We describe weighted reservoir sampling, a well-studied algorithm [2, 8]
largely unknown to the graphics community. It efficiently samples random
elements from a data stream. As real-time ray tracing becomes ubiquitous,
GPUs may shift from processing streams of rays or triangles toward
streaming random samples, paths, or other stochastic data. In that case,
weighted reservoir sampling becomes a vital tool.

After decades of research, reservoir sampling variants exist that optimize
different, sometimes conflicting, properties. Input elements can have uniform
or nonuniform weights. Outputs can be chosen with or without replacement
(i.e., potential duplicates). With various assumptions, we can fast-forward the
stream for sublinear running time, minimize the required random entropy,
choose elements with greater than 100% probability, or achieve the optimal
running time of O(K + K log(N/K)).

Complex variants are beyond the scope of this chapter, but realize that
reservoir sampling provides a flexible menu of options depending on your
required properties. This rich history exists because many domains process
streaming data. Consider managing modern internet traffic, where most
participants lack resources to store more than a tiny percent of the stream.
Or, for a more historical application, in the 1980s input data was often
streamed sequentially off reel-to-reel tape drives.

345A. Marrs, P. Shirley, I. Wald (eds.), Ray Tracing Gems II, https://doi.org/10.1007/978-1-4842-7185-8_22 
© NVIDIA 2021 

https://doi.org/10.1007/978-1-4842-7185-8_22


RAY TRACING GEMS II

EN

Es Et Eu

Ei+1 Ei Ei-1 E2 E1

Stream of Elements

Reservoir

Figure 22-1. Weighted reservoir sampling processes a stream of elements Ei and incrementally
selects a subset weighted proportional to a provided set of weights wi. Algorithmic variants can
sample with or without replacement (i.e., if we guarantee s ̸= t), can minimize the required
random entropy, and can even skip processing all N elements.

22.2 USAGE IN COMPUTER GRAPHICS

Reservoir sampling has been repeatedly rediscovered in real-time graphics.
For instance, it underlies single-pass variations of stochastic transparency [5,
10], which selects random subsets of fragments from a stream of translucent
triangles. Lin and Yuksel [6] use a simple variant to trace shadow rays with
their desired distribution. And Bitterli et al. [1] use reservoir sampling to
stream statistics for spatiotemporal importance resampling.

22.3 PROBLEM DESCRIPTION

Imagine a stream of elements Ei (for 1 ≤ i ≤ N), as in Figure 22-1. At a given
time, a streaming algorithm processes element i. Elements j < i were
previously considered and no longer reside in memory, unless copied to local
temporaries. Elements j > i have not yet reached the processor.

Weighted reservoir sampling incrementally builds a reservoirR. This is a
randomly chosen K-element subset of previously seen elements (i.e., E1 to
Ei–1). For each stream element, Ei is either discarded or inserted intoR,
potentially replacing existing entries. Replaced samples are forgotten, as if
they had never been in the reservoir.

Generally, if Ej has a selection weight wj, then (for j < i) the chance Ej ∈ R is
proportional to its relative weight wj/

∑
k<i wk. After finishing a stream with

total weight W =
∑

k≤N wk, the probability Ej ∈ R is proportional to wj/W. If
K = 1, the probability is exactly wj/W.

22.4 RESERVOIR SAMPLING WITH OR WITHOUT REPLACEMENT

For rendering, we generally want independent and identically distributed
(abbreviated i.i.d.) samples to ensure unbiasedness. In reservoir sampling,

346



CHAPTER 22. WEIGHTED RESERVOIR SAMPLING: RANDOMLY SAMPLING STREAMS

this means that the chance of selecting Et (in Figure 22-1) cannot vary based
on Es; if we enforce s 6= t, they may no longer be independent. In the reservoir
sampling terminology, sampling with replacement clearly gives
independence, as any input may occur multiple times in the reservoir.

Fortunately, reservoir sampling with replacement is easier. Delving into the
theory literature, most papers thus optimize reservoir sampling without
replacement. We leave exploring this literature to the interested reader.

When sampling with replacement, we first focus on understanding the
algorithm with reservoir size K = 1. Using replacement, samples are i.i.d., so
those given by running the algorithm three times with K = 1 are distributed
identically to those produced by running it once with K = 3.

22.5 SIMPLE ALGORITHM FOR SAMPLING WITH REPLACEMENT

For K = 1, the reservoir is a tupleR = {R,ws} containing the currently selected
element R and the sum of weights for all previously seen elements
ws =

∑
k<i wk. It gets initialized to {∅, 0} before processing the stream.

Then, for every stream element Ei with weight wi ≥ 0, the reservoir is updated
as follows, given a uniform random variate ξ:

update(Ei,wi)
ws ← ws + wi

ξ ←rand()∈ [0...1)
if (ξ < wi/ws)

R← Ei

When wi = 0, this should leave the reservoir unmodified. This happens
naturally, due to IEEE-754 NaN (not a number) behavior, but explicitly
checking may be needed to guarantee this behavior for w1 = 0 on
non-conformant hardware.

That this update algorithm selects Ei with probability wi/
∑

k≤N wk after
processing N elements can be easily shown by induction. If N = 1, we select E1
with probability w1/w1 = 1 (or with zero probability if w1 = 0).

Before processing element Ei at step i, assume that the reservoir contains
{Ej,

∑
k<i wk}, where Ej has been selected with probability wj/

∑
k<i wk. By

design, the update() function selects Ei with probability

wi
wi +

∑
k<i wk

=
wi∑
k≤i wk

. (22.1)

347



RAY TRACING GEMS II

Alternatively, it leaves the prior selection, Ej, in the reservoir with probability

1 –
wi

wi +
∑

k<i wk
=
(
∑

k≤i wk) – wi∑
k≤i wk

=
∑

k<i wk∑
k≤i wk

. (22.2)

As Ej was previously selected with probability wj/
∑

k<i wk, its final weighting is(
wj∑
k<i wk

)(∑
k<i wk∑
k≤i wk

)
=

wj∑
k≤i wk

. (22.3)

That leaves either sample Ei or Ej in the reservoir with the desired probability.

22.6 WEIGHTED RESERVOIR SAMPLING FOR K > 1

Extending the algorithm from the previous section for a reservoir with more
than one entry (with replacement) is very straightforward. Now the reservoir
is {{R1, . . . ,RK},ws} and gets initialized to {{∅, . . . , ∅}, 0}. The stream update
becomes:

update(Ei,wi)
ws ← ws + wi

for (k ∈ 1...K)
ξk ←rand()∈ [0...1)
if (ξk < wi/ws)

Rk ← Ei

22.7 AN INTERESTING PROPERTY

A key property of reservoir sampling is that one can combine multiple
independent reservoirs without reprocessing their input streams. This is vital
in some streaming contexts where it is impossible to replay the streams for a
second look.

To combine two reservoirs {R1,w1} and {R2,w2}, you get {R,w1 + w2}, where
R = R1 with probability w1/(w1 + w2); otherwise R = R2.

22.8 ADDITIONAL READING

The Wikipedia page for reservoir sampling [9] is a fine starting point for
further reading. The algorithm given here is a simplified “A-Chao” [2] from
Wikipedia. Other variants avoid storing the sum ws, but are less intuitive.
Because renderers often need sum-of-weights normalization, storing this
sum seems useful. However, the variants that exponentiate random variates
may prove useful for volumetric transport.

Much prior research on reservoir sampling has occurred in biostatistics (e.g.,
Chao [2]) leaving them unaccessible behind paywalls and containing

348



CHAPTER 22. WEIGHTED RESERVOIR SAMPLING: RANDOMLY SAMPLING STREAMS

domain-specific jargon. We found Tillé [7] to be a good statistics reference
covering reservoir sampling. We highly recommend the work of Efraimidis
and Spirakis, which includes several comparisons and surveys of reservoir
variants [3, 4] and is largely comprehensible to non-statisticians.

REFERENCES

[1] Bitterli, B., Wyman, C., Pharr, M., Shirley, P., Lefohn, A., and Jarosz, W. Spatiotemporal
reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM
Transactions on Graphics, 39(4):148:1–148:17, 2020. DOI: 10.1145/3386569.3392481.

[2] Chao, M. T. A general purpose unequal probability sampling plan. Biometrika,
69(3):653–656, 1982. DOI: 10.2307/2336002.

[3] Efraimidis, P. Weighted random sampling over data streams. Computing Research
Repository (CoRR), arXiv, https://arxiv.org/abs/1012.0256, 2010.

[4] Efraimidis, P. and Spirakis, P. Weighted random sampling with a reservoir. Information
Processing Letters, 97(3):181–185, 2006. DOI: 10.1016/j.ipl.2005.11.003.

[5] Enderton, E., Sintorn, E., Shirley, P., and Lubke, D. Stochastic transparency. In
Symposium on Interactive 3D Graphics and Games, pages 157–164, 2010. DOI:
10.1145/1730804.1730830.

[6] Lin, D. and Yuksel, C. Real-time rendering with lighting grid hierarchy. In Symposium on
Interactive 3D Graphics and Games, 8:1–8:10, 2019. DOI: 10.1145/3321361.

[7] Tillé, Y. Sampling Algorithms. Springer-Verlog, 2006. DOI: 10.1007/0-387-34240-0.

[8] Vitter, J. Random sampling with a reservoir. ACM Transactions on Mathematical Software,
11(1):37–57, 1985. DOI: 10.1145/3147.3165.

[9] Wikipedia. Reservoir sampling. https://en.wikipedia.org/wiki/Reservoir_sampling.
Accessed January 6, 2021.

[10] Wyman, C. Exploring and expanding the continuum of oit algorithms. In High
Performance Graphics, pages 1–11, 2016. DOI: 10.2312/hpg.20161187.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if you modified the licensed material. You do not have permission under this license to share
adapted material derived from this chapter or parts of it.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

349

https://doi.org/10.1145/3386569.3392481
https://doi.org/10.2307/2336002
https://arxiv.org/abs/1012.0256
https://doi.org/10.1016/j.ipl.2005.11.003
https://doi.org/10.1145/1730804.1730830
https://doi.org/10.1145/3321361
https://doi.org/10.1007/0-387-34240-0
https://doi.org/10.1145/3147.3165
https://en.wikipedia.org/wiki/Reservoir_sampling
https://doi.org/10.2312/hpg.20161187
http://creativecommons.org/licenses/by-nc-nd/4.0/

