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ABSTRACT

The alias method is a well-known algorithm for constant-time sampling
from arbitrary, discrete probability distributions that relies on a simple
precomputed lookup table. We found many have never learned about this
method, so we briefly introduce the concept and show that such lookup tables
can easily be generated.

21.1 INTRODUCTION

When rendering, we often need to sample discrete probability distributions.
For example, we may want to sample from an arbitrary environment map
proportional to the incoming intensity. One widely used technique inverts the
cumulative distribution function [2]. This is ideal for analytically invertible
functions but requires an O(logN) binary search when inverting tabulated
distributions like our environment map.

If you can afford to precompute a lookup table, the alias method [5] provides a
simple, constant-time algorithm for sampling from arbitrary discrete
distributions. However, precomputation makes it less desirable if taking just a
few samples from a distribution or if the distribution continually changes.

21.2 BASIC INTUITION

Let’s start by reviewing how we often generate samples without the alias
method. Imagine a discrete distribution, as in Figure 21-1. Bins have arbitrary
real-valued weights, and we want to randomly sample proportional to their
relative weights.

Using traditional cumulative distribution function (CDF) inversion, we first
build a discrete CDF, e.g., in Figure 21-1. We pick a uniform random number

339A. Marrs, P. Shirley, I. Wald (eds.), Ray Tracing Gems II, https://doi.org/10.1007/978-1-4842-7185-8_21 
© NVIDIA 2021 

https://doi.org/10.1007/978-1-4842-7185-8_21


RAY TRACING GEMS II

0
1
2
3
4
5
6
7
8

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 21-1. Left: a simple discrete distribution. Center: its discrete cumulative distribution
function. Right: an alias table for the distribution.

ξ ∈ [0 . . . 1), place it on the y-axis, and select as our sample the first bin it falls
into (moving left to right). Our example has weights summing to 16, so we
choose the black bin if ξ ≤ 5

16 , the light gray bin if 5
16 < ξ ≤ 1

2 , etc. Here,
finding a bin corresponding to ξ is straightforward, with at most three
comparisons. But if sampling from a light probe, linearly searching each bin
is costly. Even a fast binary search uses dozens of comparisons and walks
memory incoherently.

Essentially, table inversion picks a random value then walks the tabulated
CDF asking, “do you correspond to my sample?” Optimization involves
designing a good search.

Instead, the alias method asks, “wouldn’t it be easier with uniform weights?”
You could easily pick a random bin without a search. Clearly, our weights are
unequal. But imagine sampling bins as if uniformly weighted, say using the
average weight. We would oversample those weighted below average and
undersample those weighted above average.

Perhaps we could correct this error after selection? If we pick an
oversampled bin, we could sometimes switch to an undersampled bin. This
seems feasible; if sampling proportional to average weight, there’s an equal
amount of under- and oversampling.

Figure 21-1 also shows a table reorganizing weights from our distribution into
equal-sized bins. We call this an alias table (though that term is a bit
overloaded).

To sample, first choose a bin uniformly. Use random ξ ∈ [0 . . . 1) to check
whether to switch due to oversampling, based on threshold τ . If ξ ≥ τ , switch
to a different bin.
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21.3 THE ALIAS METHOD

Now let’s formalize this basic intuition. The alias method consumes N
elements with positive weights ωi. It samples from them, proportional to their
relative weights, in constant time—two uniform random variates and one
table lookup per sample.

A formal alias table is an array of N triplets {τ , i, j}, where τ is a threshold in
[0 . . . 1) and i and j are samples or sample indices. With care imay be stored
implicitly, so that table entries are tuples {τ , j}. Basic tables do not store or
reconstruct weights ωi.

To sample via the alias method, uniformly select ξ1, ξ2 ∈ [0 . . . 1). Use ξ1 to
pick from the N triplets, i.e., select triplet located at position bξ1Nc. Then,
return i if ξ2 < τ , otherwise return j.

Interestingly, only two choices i and j are ever needed in any bin. In fact,
proving this is the only tricky part of the alias method. This property arises by
construction during table creation, though it subtly breaks the visual intuition
developed in the previous section.

21.4 ALIAS TABLE CONSTRUCTION

Our goal is not efficient construction, but providing a clear and correct
algorithm. Optimal O(N) table construction algorithms are left for further
reading. We give a simple divide-and-conquer approach similar to a proof by
induction.

We start with our N input samples and their weights ωi. We can easily
compute the average sample weight 〈ω〉; the summed weight is∑

i∈N ωi ≡ N〈ω〉. Here is the idea for our simple construction: With a series of
N steps, create one tuple {τ , i, j} per step. Each tuple has aggregate weight
〈ω〉, so after one step we have N – 1 samples left to insert, with total weight
N〈ω〉 – 〈ω〉 (still with an average of 〈ω〉 per sample).

Each of these N steps looks as follows:

1. Sort the (remaining) input samples by weight.

2. Create a tuple {τ , i, j}, where i is the lowest-weighted sample, τ is ωi/〈ω〉,
and j is the highest-weighted sample.

3. Remove sample i from the list of remaining samples.

4. Reduce sample j’s weight ωj by 〈ω〉 – ωi (i.e., ωj = (ωj + ωi) – 〈ω〉).
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Figure 21-2. The steps to build an alias table from the discrete distribution in the upper left. The
blue line is the average weight.

Due to the sort, the highest-weighted sample j has above average weight
(ωj ≥ 〈ω〉) and the lowest-weighted sample i has ωi ≤ 〈ω〉. This ensures that
τ ≤ 1 and that only two samples are needed to fill the tuple (because
ωi + ωj ≥ 〈ω〉). It also ensures that, after creating {τ , i, j}, all weight from
sample i has been fully accounted for in the table. Sample j’s weight gets
reduced, as some is included in the newly created tuple.

To see why only two samples are needed per tuple, note that step 4 can
reduce ωj below 〈ω〉. In other words, we do not “scrape excess” probability
from high-weighted samples into low-weighted ones as if moving dirt with an
excavator. We actively ensure that merging two samples gives a complete
tuple—even if that leaves the formerly highest-weighted sample with a
below-average weight.

Figure 21-2 demonstrates an alias table built from a slightly more complex
distribution. Each step creates exactly one alias table tuple, requiring N steps
for a distribution with N discrete values. The last step is trivial, as just one
sample remains.

21.5 ADDITIONAL READING AND RESOURCES

As a well-known algorithm, many resources discuss the alias method. Many
introductory statistics textbooks and Wikipedia provide good starting points.
The original paper by Walker [5] is a fairly easy read, and Vose [4] provides an
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O(N) table build that observes that you can provide the guarantees outlined in
Section 21.4 without any sorting. Devroye [1] presents a clear, more
theoretical discussion. Schwarz [3] has an outstanding webpage with clear
pseudocode and figures detailing the alias method, Vose’s O(N) build, and a
discussion of numerical stability.
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