
Journal of Computer Graphics Techniques Vol. 6, No. 2, 2017 http://jcgt.org

Generating Stratified Random Lines in a Square

Peter Shirley
NVIDIA

Chris Wyman
NVIDIA

Figure 1. One hundred uniform lines in the square. The lines are generated with uniform
seed points (ξ1, ξ2) ∈ [0, 1]2 (left to right): regular lattice, Hammersley, jittered (stratified),
uniformly random.

Abstract

When generating a set of uniformly distributed lines through a square, some care is needed
to avoid bias in line orientation and position. We present a compact algorithm to generate
unbiased uniformly distributed lines from a uniform point set over the unit square.

1. Lines in the Square

It is often useful to generate sets of uniform lines through a square (e.g., our own
use case to test antialiasing algorithms on a sampling of all possible edges, or to an-
tialias using line samples rather than point samples [Jones and Perry 2000; Singh
et al. 2017]). Our lines are restricted to 2D as opposed to the 3D lines we see in many
ray-tracing and light-field applications, or the line segments in 2D with an underlying
3D parameterization [Sun et al. 2013]. Our application is typical in benefitting from
stratification, which often changes the order of convergence of sampling-based algo-
rithms [Mitchell 1996]. This paper is a reaction to our experience translating what
is available in the literature into code; the code ended up being somewhat involved
and difficult to debug until we used a polar parameterization that allowed negative
radii which results in very compact code. This does not produce better stratified lines
than what is already in the literature, but it does both spell out the details needed for
implementation as well as result in a small fast implementation.

48 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Generating Stratified Random Lines in a Square

Vol. 6, No. 2, 2017
http://jcgt.org

We use the positive unit square (x, y) ∈ [0, 1]2. Mitchell [1992] presented a way
to generate uniform lines from random triples (ξ1, ξ2, ξ3) in the unit cube using the
slope intercept (m, b) dual space (where the line equation is y = mx+ b):

m =
ξ1 − 0.5

ξ2 − 0.5
, b =

{
(1−m)ξ3 if m < 0

(−1−m)ξ3 + 1, otherwise.

This method is fast and effective but does not easily enable 2D stratification over the
dual space, since it relies on 3D random input. Literature in computational geome-
try discusses line-space measures that provide a methodology to sample the 2D dual
spaces [Santaló 2004]. Marschner et al. [2015] sketch some of the details of two of
the popular computational geometry approaches to uniformly sample these spaces,
one in slope-intercept space ((m, b) space) and one in polar space ((r, θ) space), but
leave details and boundary cases unresolved. This paper grew from trying to fill in
those details, but we found the resulting code fairly complicated because of the num-
ber of cases that arose from the multiple sides of the square. We got the idea for
the improved method from two things: the recurring sin θ term that arises and the
great simplification of square-disk mappings resulting from using negative radii as
proposed by David Cline [Shirley 2011]. In this paper, we sample in (r, sin θ) space
and provide compact and efficient code that covers all cases.

Unfortunately, the dual space (r, sin θ) does not have a bijection with the full cir-
cle (since sin(θ) = sin(π − θ)). We instead use θ ∈ [−π

2 . . .
π
2) and allow negative r,

as shown in Figure 2. This improves stratification quality by ensuring nearby (r, sin θ)

correspond to nearby lines (and vice versa). It also avoids using inverse trigonometric
operations. We choose random lines by first selecting sin θ and then choosing lines
uniformly in the corresponding range of valid r. The observation that the number of

θ

r

θ

-r

Figure 2. Left: A line specified by angle θ and the perpendicular distance r from the origin.
Right: Instead of varying θ in [0 . . . 2π) with positive radii, we use θ in

[
−π

2 . . .
π
2

)
and allow

negative radii. For the two lines shown, θ is the same but their radii vary in sign. This ensures
two nearby lines (e.g., ±r near zero) are also nearby in the dual (r, sin θ) space.

49

http://jcgt.org

Journal of Computer Graphics Techniques
Generating Stratified Random Lines in a Square

Vol. 6, No. 2, 2017
http://jcgt.org

θ

r r
θ

Figure 3. The most range of positive and negative radii that hit the square for a given θ. The
“measure” of the set of lines that share that theta is proportional to the length of the line in the
figure and thus maximum at θ = ±π/4; the generated lines at a given θ are perpendicular to
that line, and the longer that line is, the more possible lines that are perpendicular.

lines at a given orientation is proportional to the cross section of the square at that
angle (Figure 3) yields

p(θ) ∝

cos
(
θ +

π

4

)
if θ < 0

cos
(
θ − π

4

)
, otherwise.

We treat these two cases independently, as each has the same number of lines. Using
the standard method of integrating p to get a cumulative distribution function and
inverting, we get two functions for positive and negative θ. This gives two cumulative
probability distribution functions each varying from 0 to 1:

P (θ) =

√
2

2

∫ θ

−π
2

cos
(
θ +

π

4

)
dθ if θ < 0

√
2

2

∫ θ

0
cos
(
θ − π

4

)
dθ, otherwise.

Integrating yields

P (θ) =

1

2
+

√
2

2
sin
(
θ +

π

4

)
if θ < 0

1

2
+

√
2

2
sin
(
θ − π

4

)
, otherwise.

To maintain stratification, we can use the first random (or stratified) number ξ1 sample
both functions by scaling [0, 0.5) to [0, 1) when ξ1 < 0.5, and scaling [0.5, 1) to [0, 1)

otherwise. These yield two expressions to be inverted, the first when ξ1 < 0.5:

2ξ1 =
1

2
+

√
2

2
sin
(
θ +

π

4

)
, (1)

50

http://jcgt.org

Journal of Computer Graphics Techniques
Generating Stratified Random Lines in a Square

Vol. 6, No. 2, 2017
http://jcgt.org

and then when ξ1 > 0.5:

2(ξ1 − 0.5) =
1

2
+

√
2

2
sin
(
θ − π

4

)
. (2)

These equations can be solved for sin(θ + k), but we would really like to solve for
sin θ. Both of these equations are of the form

sin
(
θ ± π

4

)
− C = 0.

Solving for θ:
θ = arcsinC ∓ π

4
.

So solving for sin θ yields

sin θ = sin
(
arcsinC ∓ π

4

)
.

From the identity sin(α± β) = sinα cosβ ± sinβ cosα, we have

sin θ = sin (arcsinC) cos
π

4
∓ sin

π

4
cos (arcsinC) ,

which reduces to

sin θ =

√
2

2

(
C ∓

√
1− C2

)
.

In the case of Equation (1),

C =
4ξ1 − 1√

2
,

and for Equation (2),

C =
4ξ1 − 3√

2
.

This gives us the two corresponding equations,

sin θ =
1

2

(
(4ξ1 − 1)−

√
2− (4ξ1 − 1)2

)
for ξ1 < 1/2, and

sin θ =
1

2

(
(4ξ1 − 3) +

√
2− (4ξ1 − 3)2

)
for ξ1 ≥ 1/2. This yields an equation with two cases:

sin θ =

1

2

(
(4ξ1 − 1)−

√
2− (4ξ1 − 1)2

)
if ξ1 < 0.5

1

2

(
(4ξ1 − 3) +

√
2− (4ξ1 − 3)2

)
, otherwise.

51

http://jcgt.org

Journal of Computer Graphics Techniques
Generating Stratified Random Lines in a Square

Vol. 6, No. 2, 2017
http://jcgt.org

// all variables double

// x1, x2 are uniform random numbers on [0,1)

v = 1 - fabs(4*x1 - 2);

sinT = copysign(0.5 * (v - sqrt(2-v*v)), x1-0.5);

r = fmin(sinT,0) + x2 * (sqrt(1-sinT*sinT) + fabs(sinT));

Listing 1. A mapping from uniform samples to uniform lines. The copysign function
allows the two “if” cases to be collapsed into one code statement.

We can use this equation as is, but the two cases are similar enough that perhaps
we can get them to share terms in code form. If we define a variable

u = 4ξ1 − 2,

then we have something similar to the twoC above, but also a variable that is negative
when ξ > 0.5 and non-negative otherwise, so its sign can serve to distinguish cases.
So we can also transform u to one equation for all values of ξ:

v = 1− |u| =

{
4ξ1 − 1 if ξ1 < 0.5

−4ξ1 + 3, otherwise.

We will be able to use this along with the copysign function to avoid an explicit
branch.

Once a θ is chosen, we then choose r uniformly for the legal values for that θ. As
can be derived from the range of r hitting the square in Figure 3, this gives

r =

{
sin θ + ξ2(cos θ − sin θ) if θ < 0

ξ2(cos θ + sin θ), otherwise.

Solving for ξ1 and picking an r yields equations that can be simplified by grouping
common subexpressions using a sign function; they can be made surprisingly compact
as shown in Listing 1.

The random input can be from any uniform points on [0, 1)2 as shown in Figure 1.
The results for a jittering for a variety of numbers of lines are shown in Figure 4.

Figure 4. Jittered input: 25, 100, 400, 1600 lines.

52

http://jcgt.org

Journal of Computer Graphics Techniques
Generating Stratified Random Lines in a Square

Vol. 6, No. 2, 2017
http://jcgt.org

References

JONES, T. R., AND PERRY, R. N. 2000. Antialiasing with line samples. In Proceedings of the
Eurographics Workshop on Rendering, Eurographics Association, Aire-la-Ville, Switzer-
land, 197–206. 48

MARSCHNER, S., SHIRLEY, P., GLEICHER, M., HOFFMAN, N., JOHNSON, G., MUNZNER,
T., REINHARD, E., THOMPSON, W. B., , AND WYVILL, B. 2015. Fundamentals of
Computer Graphics, fourth ed. CRC Press, Boca Raton, FL. 49

MITCHELL, D. 1992. Ray tracing and irregularities of distribution. In Proceedings of the Eu-
rographics Workshop on Rendering, Eurographics Association, Aire-la-Ville, Switzerland,
61–69. 49

MITCHELL, D. 1996. Consequences of stratified sampling in graphics. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM, New
York, NY, SIGGRAPH ’96, 277–280. 48

SANTALÓ, L. A. 2004. Integral Geometry and Geometric Probability. Cambridge University
Press, Cambridge, UK. 49

SHIRLEY, P., 2011. Blog post: Improved code for concentric map. http://psgraphics.
blogspot.com/2011/01/improved-code-for-concentric-map.html,
January. Accessed: 2017-03-11. 49

SINGH, G., MILLER, B., AND JAROSZ, W. 2017. Variance and convergence analysis of
monte carlo line and segment sampling. Computer Graphics Forum (Proceedings of EGSR)
36, 4. 48

SUN, X., ZHOU, K., GUO, J., XIE, G., PAN, J., WANG, W., AND GUO, B. 2013. Line
segment sampling with blue-noise properties. ACM Trans. Graph. 32, 4 (July). 48

Author Contact Information
Peter Shirley
NVIDIA
2150 S 1300 East
Suite 500
Salt Lake City, UT 84106
pshirley@nvidia.com
https://research.nvidia.com/person/peter-
shirley

Chris Wyman
NVIDIA
11431 Willows Road NE
Suite 200
Redmond, WA 98052
cwyman@nvidia.com
https://research.nvidia.com/person/chris-
wyman

Peter Shirley, Chris Wyman, Generating Stratified Random Lines in a Square, Journal of
Computer Graphics Techniques (JCGT), vol. 6, no. 2, 48–54, 2017
http://jcgt.org/published/0006/02/03/

53

http://jcgt.org
http://psgraphics.blogspot.com/2011/01/improved-code-for-concentric-map.html
http://psgraphics.blogspot.com/2011/01/improved-code-for-concentric-map.html
mailto:pshirley@nvidia.com
https://research.nvidia.com/person/peter-shirley
https://research.nvidia.com/person/peter-shirley
mailto:cwyman@nvidia.com
https://research.nvidia.com/person/chris-wyman
https://research.nvidia.com/person/chris-wyman
http://jcgt.org/published/0006/02/03/

Journal of Computer Graphics Techniques
Generating Stratified Random Lines in a Square

Vol. 6, No. 2, 2017
http://jcgt.org

Received: 2016-08-22
Recommended: 2016-11-11 Corresponding Editor: Marc Stamminger
Published: 2017-06-30 Editor-in-Chief: Marc Olano

c© 2017 Peter Shirley, Chris Wyman (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

54

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

