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Abstract

We provide three analytical fits to the CIE x̄, ȳ, and z̄ color matching curves commonly used
in predictive and spectral renderers as an intermediate between light spectra and RGB col-
ors. Any of these fits can replace the standard tabulated CIE curves. Using tabulated curves
can introduce typos, encourage crude simplifying approximations, or add opportunities to
download curves from sources featuring inconsistent or incorrect data. Our analytic fits are
simple to implement and verify. While fitting introduces error, our fits introduce less than
the variance between the human-subject data aggregated into the CIE standard. Additionally,
common rendering approximations, such as coarse spectral binning, introduce significantly
more error. We provide simple, analytic fits in Equations 2 and 3, but even our more accurate
fit in Equation 4 only requires ten lines of code.

1. Introduction

We have long understood that human vision is trichromatic. In graphics, the suitability
of three-dimensional color spaces and display devices stems from this physiology. To
understand this trichromatism, researchers in the 1920s measured human responses
to lighting stimuli and empirically derived various spectral response curves spanning
human trichromatic vision. The Commission Internationale de l’Éclairage (CIE) stan-
dardized these measured curves. The most common standard used in graphics is the
CIE XYZ color space, consisting of spectral curves known as the standard observer
or color matching functions; it is preferred over alternate CIE spaces for its nice nu-
merical properties.

The curves x̄, ȳ, and z̄ of the CIE standard observer provide a standardized way of
converting spectral radiance L(λ) to a trichromatic color space:

X =
∫

L(λ) x̄(λ)dλ,

Y =
∫

L(λ) ȳ(λ)dλ, (1)

Z =
∫

L(λ) z̄(λ)dλ.
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Simple transforms can take these XYZ values to other common color spaces, such as
RGB, sRGB, Yuv, or Lab.

In graphics, these curves are typically used only in physically-based and predic-
tive renderers. For other applications, the additional accuracy of spectral lighting does
not justify the cost of maintaining full spectra throughout all computations.

One part of this extra cost is maintaining a tabulated representation of the color
matching functions, which are provided at a 1 nm sampling rate. Such large tabulated
data sets limit usage in bandwidth- or memory-limited applications, encourage the
use of crude approximations, and provide opportunities to download incorrect data or
introduce hard-to-detect typos. We provide fits to the x̄, ȳ, and z̄ curves. This allows
analytical evaluation at arbitrary wavelengths and reduces programmer cost. While
these fits introduce some error, we show that this is less than the measurement error
as well as the errors introduced by many commonly used approximations (e.g., coarse
spectral binning).

1.1. Background

Our initial goal for this project was a quick analytical fit to the x̄, ȳ, and z̄ curves to
simplify a new spectral-path tracer. This goal was justified by our collective expe-
rience in these curves’ robustness; we have used 1 nm, 5 nm, 10 nm, and coarser
samplings without apparent variation in image quality.

Prior to our evaluation in Section 3, we explored the color-science literature to
identify which aspects of these curves needed preservation in an analytical fit. Sur-
prisingly, we found few answers.

In fact, there are two different CIE-standard x̄ȳz̄ functions, the 1931 and 1964
standard observers [Schanda 2007]. The measurements are valid for 2◦ and 10◦ fields
of view, respectively. As color science often experiments with very small fields of
view, the 1964 curves are often ignored, so the 1931 data is more widely available.
For graphics, the 10◦, 1964 curves may make more sense, as screens typically subtend
well over a 2◦ field of view. We provide fits for both standards.

While apparently not widely known, a few analytic fits to x̄, ȳ, and z̄ have been
proposed [Moon and Spencer 1943; Tannenbaum 1974]. These use poorly fitting or
computationally expensive analytic functions, and all were developed without exten-
sive computing support, which prevented extensive parameter space searches; all our
fits exhibit significantly lower error.

Various aspects of the standard curves make them difficult to fit with simple
curves. The literature (e.g., [Guild 1932]) is unclear if these are measurement is-
sues, sampling artifacts, or the underlying physiology. Rather than overfit, we ensure
our errors are smaller than measured variances in humans.
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2. Fitting the XYZ Color Matching Curves

During development, our goals broadened from a quick hack to avoid typing tabulated
data to include a more careful fit suitable for predictive renderers. Because of this, we
tested numerous fits with varying properties and concluded that two types would be
useful to the community: a simple, C∞ analytic fit and a more accurate, C1 piecewise
fit.

2.1. Simple, Single-Lobe Fit

To achieve our initial, simple fit, we plugged the CIE color matching functions∗ into
an online curve fitting tool† that uses a Levenberg-Marquardt algorithm [Press et al.
2007] to fit to various functions. This provided us single-lobe analytic functions to
fit ȳ and z̄, and a sum of two lobes to fit x̄. Somewhat unsurprisingly, given Hous-
ton’s [1930] early fitting for photometry, the best fits used Gaussian and log-normal
distributions.

For the curves most commonly used in graphics, the CIE 1931 standard observer,
the following x̃, ỹ, and z̃ approximate x̄, ȳ, and z̄:

x̃31(λ) = 1.065 exp
(
−1

2

(
λ−595.8

33.33

)2
)
+0.366 exp

(
− 1

2

(
λ−446.8

19.44

)2
)
,

ỹ31(λ) = 1.014 exp
(
−1

2

(
lnλ−ln556.3

0.075

)2
)
, (2)

z̃31(λ) = 1.839 exp
(
−1

2

(
lnλ−ln449.8

0.051

)2
)
.

These fit the CIE standard curves reasonably well; x̃31 and ỹ31 have root mean square
errors below 0.015 and maximum absolute errors below 0.046 (roughly 4%). How-
ever, the z̄ curve is difficult to fit near the peak and base, so z̃31 has almost three times
that error.

For the CIE 1964 standard observer, we found the following x̃, ỹ, and z̃ fit:

x̃64(λ) = 0.398 exp
(
−1250

[
ln
(

λ+570.1
1014

)]2
)

+1.132 exp
(
−234

[
ln
(

1338−λ

743.5

)]2
)
,

ỹ64(λ) = 1.011 exp
(
− 1

2

(
λ−556.1

46.14

)2
)
, (3)

z̃64(λ) = 2.060 exp
(
−32

[
ln
(

λ−265.8
180.4

)]2
)
.

∗Tabulated CIE XYZ standard observer data was obtained from the Rochester Institute of Technology
Munsell Color Science Lab at http://www.cis.rit.edu/mcsl/online/cie.php.
†Curve fitting done using ZunZun, http://www.zunzun.com.
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While more complex than our fits to the 1931 data, the fit in Equation 3 is better
behaved; x̃64 , ỹ64 , and z̃64 all have root mean square errors below 0.016 and maximum
absolute errors below 0.056 (roughly 3%).

2.2. Multi-Lobe, Piecewise Gaussian Fit

The single-lobe Gaussian fits presented above should suffice for many applications
(see Section 3), except those where closely matching the CIE standard is vital. Unfor-
tunately, all the curves have asymmetric lobes and x̄ and z̄ have strangely flat-topped
lobes near 450 nm. None of our simple analytical curves fit these characteristics.
To reduce the remaining errors, we explored Gaussian mixture models, polynomial-
windowed Gaussian lobes, and piecewise continuous Gaussians. The online fitting
tool we used did not handle these models, so we wrote code to perform these fits via
the Simplex method [Press et al. 2007].

Our best fits use multiple piecewise continuous Gaussians for each curve. With
three Gaussians for x̃ and two for ỹ and z̃, we achieved squared error rates below
the within-observer variance in the experimental measurements used to form the CIE
standards [Nimeroff et al. 1962]. While adding additional Gaussians could reduce
numerical error, we would effectively be fitting noise in the data; more error is likely
added elsewhere, e.g., during monitor and printer color calibration.

Our piecewise fit to the 1931 standard observer uses the following form:

x̃31(λ) =
2

∑
i=0

αxi exp
(
−1

2 [ (λ−βxi) S(λ−βxi ,γxi ,δxi) ]
2
)
,

ỹ31(λ) =
1

∑
i=0

αyi exp
(
−1

2 [ (λ−βyi) S(λ−βyi ,γyi ,δyi) ]
2
)
, (4)

z̃31(λ) =
1

∑
i=0

αzi exp
(
−1

2 [ (λ−βzi) S(λ−βzi ,γzi ,δzi) ]
2
)
,

where S(x,y,z) is the selector function represented in C code as (x<0)?y:z, or mathe-
matically using a pair of Heaviside functions, H:

S(x,y,z) = y(1−H(x))+ zH(x).

x̃0 x̃1 x̃2 ỹ0 ỹ1 z̃0 z̃1

α 0.362 1.056 -0.065 0.821 0.286 1.217 0.681
β 442.0 599.8 501.1 568.8 530.9 437.0 459.0
γ 0.0624 0.0264 0.0490 0.0213 0.0613 0.0845 0.0385
δ 0.0374 0.0323 0.0382 0.0247 0.0322 0.0278 0.0725

Table 1. Fitting coefficients for our multi-lobe Gaussian fit in Equation (4).
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// Inputs: Wavelength in nanometers

float xFit_1931( float wave )

{

float t1 = (wave-442.0f)*((wave<442.0f)?0.0624f:0.0374f);

float t2 = (wave-599.8f)*((wave<599.8f)?0.0264f:0.0323f);

float t3 = (wave-501.1f)*((wave<501.1f)?0.0490f:0.0382f);

return 0.362f*expf(-0.5f*t1*t1) + 1.056f*expf(-0.5f*t2*t2)

- 0.065f*expf(-0.5f*t3*t3);

}

float yFit_1931( float wave )

{

float t1 = (wave-568.8f)*((wave<568.8f)?0.0213f:0.0247f);

float t2 = (wave-530.9f)*((wave<530.9f)?0.0613f:0.0322f);

return 0.821f*exp(-0.5f*t1*t1) + 0.286f*expf(-0.5f*t2*t2);

}

float zFit_1931( float wave )

{

float t1 = (wave-437.0f)*((wave<437.0f)?0.0845f:0.0278f);

float t2 = (wave-459.0f)*((wave<459.0f)?0.0385f:0.0725f);

return 1.217f*exp(-0.5f*t1*t1) + 0.681f*expf(-0.5f*t2*t2);

}

Listing 1. Simple C code for our multi-lobe Gaussian fit from Equation 4.

The fitting parameters for α, β, γ, and δ are provided in Table 1, and simple C code to
implement these functions is provided in Listing 1.

3. Evaluation and Discussion

This paper provides simple, easy-to-use fits as an alternative to large tabular forms of
the standard color matching curves. To convince error-sensitive users of the validity
of these substitutions, we evaluate these fits by asking these questions: What errors do
our fits introduce relative to common simplifications and the standard curves? How do
these fits compare to prior analytic fits? How do these fits affect output RGB images?

Common Simplifications. We explore two simplifications used in some spectral ren-
derers, to compare their error with our analytic fits. In particular, we compare with
coarse binning and linearly interpolating sparse x̄ȳz̄ samples. Unless a path tracer
stochastically assigns a wavelength to each photon, maintaining 1 nm sampled spec-
tra along the path increases the computation at reflections in addition to increasing the
storage needed for spectral measured BRDFs. Most renderers, thus, use some bin size
larger than 1 nm; we compare against a 10-bin spectral representation (30 nm-wide
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Max Squared Error Mean Squared Error
x̃ ỹ z̃ x̃ ỹ z̃

Moon and Spencer [1945] 9.5e-3 3.9e-3 5.9e-2 9.0e-4 4.1e-4 2.5e-3
1931 CIE data, 10 bins 7.1e-2 2.5e-1 5.8e-1 5.6e-3 4.1e-3 2.0e-2
1931 CIE data; 10 nm, interpolated 1.7e-4 5.2e-5 3.2e-3 1.4e-5 4.2e-6 1.3e-4
1931 Single-lobe fit (Sec. 2.1) 1.3e-3 2.1e-3 2.5e-2 2.2e-4 2.2e-4 1.6e-3
1931 Multi-lobe fit (Sec. 2.2) 2.0e-4 6.4e-5 4.9e-4 3.1e-5 7.1e-6 1.6e-5
Measured error, between subjects N/A 1.2e-3 3.8e-4 3.7e-3
Measured error, within subject N/A 3.8e-5 1.2e-5 1.1e-4
1964 Single-lobe fit (Sec. 2.1) 2.1e-3 7.2e-4 3.0e-3 1.9e-4 1.2e-4 2.4e-4
Tannenbaum [1974] 1.8e-1 7.7e-2 7.7e-2 3.0e-2 8.4e-3 5.0e-3

Table 2. Maximum and mean squared error for fits of the CIE standard observers, rela-
tive to the corresponding 1 nm sampled curves. Experimental errors come from Nimeroff et
al. [1962]. Moon and Spencer [1945] fit the 1931 standard observer, Tannenbaum [1974] the
1964 observer.

bins). While less common, using a subset of the x̄ȳz̄ tables and linearly interpolating
reduces the necessary memory footprint.

Numerical Errors. Table 2 compares the errors of our fits, previously published an-
alytic fits by Moon and Spencer [1945] and Tannenbaum [1974], and the common
simplifications discussed above. Errors are relative to 1 nm sampled CIE standard ob-
server curves. We also include in Table 2 the errors from the experimental measure-
ments used to create the 1964 standard observer [Nimeroff et al. 1962]. Similar num-
bers apparently do not exist for the earlier standard, though Moon and Spencer [1943;
1945] suggest the errors may have been larger.

These error metrics show even our simple, single-lobe fits are closer to the CIE
standard curves than prior analytic models; they are also simpler to compute. Our
simple fit introduces an order of magnitude less error than using coarse binning, a
common simplification in many spectral renderers. Additionally, our simple fits ex-
hibit less error than the experimental variation between different human subjects.

For users desiring more accuracy, our multi-lobe Gaussian fit in Section 2.2 in-
troduces less error than the experimental variations between repeated measurements
on a single subject. The error is similar to that introduced by linearly interpolating
between 10 nm samples on the curves. Given that the CIE curves themselves were
interpolated to 1 nm [Judd 1931], closer fits may end up overfitting to noise, sampling
artifacts, and prior interpolation schemes.

Rendering Comparisons. Figure 1 shows a worst-case image for visualizing differ-
ences in the x̄ȳz̄ color matching curves, a rainbow where the spectrum in each pixel
is non-zero at one wavelength. Despite significant variations in the curves, most are
indistinguishable from the standard CIE observers (Figure 1(f,g)). Only the Tannen-
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Figure 1. A rainbow under various x̄ȳz̄ curves. The spectrum in each pixel is a Dirac function,
varying from 375 nm to 725 nm. Top: The result using each curve; Bottom: 8x differences
with the 1931 or 1964 CIE standards. The curves come from (a) ten 30 nm-bins of 1931
CIE data, (b) Moon and Spencer [1945], (c) our single-lobe fit (x̃31 ỹ31 z̃31 ) from Section 2.1,
(d) our multi-lobe fit from Section 2.2, (e) 1931 CIE data sampled every 10 nm and linearly
interpolated, (f) 1931 CIE standard observer, (g) 1964 CIE standard observer (h) our single-
lobe fit (x̃64 ỹ64 z̃64 ) from Section 2.1, and (i) Tannenbaum [1974].

baum [1974] fit and binning approach give drastically different results. The Moon
and Spencer [1945] and our single-lobe fit closely approximate the standard curve,
but slightly blur the color boundaries. Our multi-lobe fit best matches the 1931 CIE
standard, but does have a slight variation apparent in the purple band.

Figures 2 and 3 shows the MacBeth color checker using the x̄ȳz̄ curves discussed
in the paper. We also plot the curves and their absolute deviations from the standard
observers. As in Figure 1, our multi-lobe Gaussian fits closely to the 1931 standard
observer, with slightly higher error than interpolating a 10 nm sampled standard ob-
server. Either our single-lobe fit or the Moon and Spencer [1945] fit should work for
most renderers, though the Moon and Spencer fit is fairly expensive to compute and
has precision issues when implemented poorly.
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Figure 2. Comparing various x̄ȳz̄ fits to the 1931 CIE standard observer. Top to bottom: 1931
CIE standard observer, CIE standard sampled at 10 nm and linearly interpolated, our multi-
lobe fit from Section 2.2, our single-lobe fit from Section 2.1, the Moon and Spencer [1945]
fit, and a coarse 10-bin fit of the 1931 CIE data,

Our single-lobe approach closely fits the 1964 CIE standard observer. Given the
closeness of this fit and the reliance on the 1931 standard in the graphics community,
we decided a better multi-lobe fit was unnecessary. Clearly, renderers should avoid
using the Tannenbaum [1974] fit, as it significantly overshoots in the red region of the
spectrum and undershoots in green and blue.

While our results use sRGB, rather than spectral or XYZ color space, they still
provide insight into expected errors (after all most renderings get displayed as sRGB
or CMYK). The MacBeth color checker is relatively unsaturated, so few colors in
the accurate fits lie outside of gamut. In the rainbow comparison, the interesting
errors occur at saturated color boundaries. These differences show up clearly in our
difference images.
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Figure 3. Comparing various x̄ȳz̄ fits to the 1964 CIE standard observer. Top to bottom: 1964
CIE standard observer, our single-lobe fit, and Tannenbaum’s [1974] fit.

Performance Considerations. By using analytic fits rather than tabulated samples,
our approach avoids polluting memory caches with tabulated x̄ȳz̄ samples. This is
especially important in GPUs, DSPs, and other stream processors where thousands
of pixels may be processed in parallel. To demonstrate this effect, we timed each
x̄ȳz̄ representation from Figure 1 with both CPU and GPU implementations (see Ta-
ble 3). These simulations show best-case results for tabulated approaches, since we
timed a tight loop over hundreds of thousands of x̄ȳz̄ evaluations. No other operations
accessed memory, so the tabulated x̄ȳz̄ curves resided in CPU cache throughout our
test.

1931 CIE data 1964 CIE data
(a) (b) (c) (d) (e) (f) (g) (h) (i)

CPU evaluation (msec / 100k) 2.4 31.1 20.8 17.5 6.8 5.7 5.3 19.0 18.0
GPU evaluation (µsec / 100k) 3.8 0.5 0.8 0.9 11.7 13.9 14.3 0.4 0.9

Table 3. Cost to evaluate x̄ȳz̄ at 100,000 random wavelengths. Evaluations performed back-
to-back, so tabulated values still reside in cache, especially for large CPU caches. (a) Ten
30 nm bins, (b) Moon [1945], (c) our single-lobe fit, (d) our multi-lobe fit, (e) 10 nm 1931
CIE data, (f) 1 nm 1931 CIE data, (g) 1 nm 1964 CIE data, (h) our single-lobe fit, and (i)
Tannenbaum [1974].

4. Summary

We introduced three new fits of the CIE x̄ȳz̄ color matching curves in Equations (2),
(3), and (4). We believe any are suitable as a replacement for the standard x̄ȳz̄ curves
for rendering applications, and we showed they all exhibit less error than the experi-
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mental measurements used to generate the standardized curves. For users desiring the
most accurate representation possible, our multi-lobe fit in Equation (4) provides a fit
comparable to interpolating 10 nm data samples yet requires just ten lines of code.
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Index of Supplemental Materials

We provide supplemental material including C++ code for each of the x̄ȳz̄ functions discussed
in the paper, and a simple curve viewer to interactively compare the curves. The code is
organized as follows:

curves/ - C++ implementation of XYZ curves used in the paper

data/ - headers including tabulated data for various CIE standard curves

iglu/ - headers and library dependencies for curve viewer
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Release/ - precompiled curve viewer binaries for Windows 32

main.cpp - curve viewer source
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