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Figure 1: The overview (left) of an interior scene illuminated by traditional shadow mapping and close look (right) to certain areas. Both
constant depth bias (first column) and slope scale depth bias (second column) suffer from shadow acne and shadow detachment to different
extent. Our method (third column) has no visible acne and preserves more shadow details. Dual depth layers depth bias (fourth column) is
used as reference to compare our method against.

Abstract

Shadow aliasing due to limited storage precision has been plaguing
discrete shadowing algorithms for decades. We present a simple
method to eliminate false self-shadowing through adaptive depth
bias. Unlike existing methods which simply set the weight of the
bias based on surface slope or utilize the second nearest surface, we
evaluate the bound of bias for each fragment and compute the opti-
mal bias within the bound. Our method introduces small overhead,
preserves more shadow details than widely used constant bias and
slope scale bias and works for common 2D shadow maps as well as
3D binary shadow volumes.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing and texture

Keywords: bias, shadow, adaptive, real-time

∗e-mail:hangdou@gmail.com
†e-mail:danielyan86129@gmail.com
‡e-mail: kerzner@sci.utah.edu
§e-mail:zeng-dai@uiowa.edu
¶e-mail:chris.wyman@acm.org

1 Introduction

Shadow mapping is the most commonly used method to cast surface
shadows in games and other interactive applications. However, tra-
ditional shadow map suffers from shadow acne due to under sam-
pled geometry in light space [Scherzer et al. 2011]. A constant
depth bias [Williams 1978] can remove incorrect self-shadowing
but also causes false unshadowing or shadow detachment. Non-
constant depth methods [King 2004; Gautron et al. 2013] were pro-
posed to avoid shadow detachment by restricting the bias amount
based on surface slope scale. However, these methods fail to ap-
ply the minimal bias for each fragment and thus still produce false
unshadowing to some extent.

Methods utilizing the second nearest surface depth [Woo 1992;
Weiskopf and Ertl 2003] produce much less artifacts or acne than
existing single depth layer based methods but sacrifice the perfor-
mance due to the extra render pass, which makes them impractical
in real time applications. Methods storing extra triangle informa-
tion [Dietrich 2001; Dai et al. 2008] also reduce artifacts but they
introduce more storage and have lower performance than traditional
shadow map.

We propose a novel approach to remove false self-shadowing by
generating bias for each fragment adaptively. We estimate a tight
bias bound for each fragment and compute the optimal bias within
the bound. We also introduce an adaptive epsilon to make sure the
false shadowed fragment is shifted above its occluder. Our adap-
tive depth bias is easy to implement, comes with little cost and
works well for 2D shadow maps and 3D binary shadow volumes in
fully dynamic scenes. We apply our algorithm to traditional shadow
map [Williams 1978], paraboloid shadow map [Brabec et al. 2002]
and voxelized shadow volumes (VSVs) [Wyman 2011]. The main
contributions of this paper are:

• analyzing the tight bias bound for each fragment;



• providing minimal depth bias to eliminate false self-
shadowing.

2 Related Work

A detailed description of surface visibility algorithms is beyond the
scope of this paper. Woo et al. [1990] and Eisemann et al. [2011]
give nice surveys to shadowing algorithms. To remove false self-
shadowing coming with shadow maps, research has been done from
different aspects: warping shadow map texture, avoiding depth bias
and using non-constant depth bias.

Methods were presented to parameterize the shadow map so that
texture resolution is concentrated where it is needed. Cascaded
shadow map [Tadamura et al. 2001] splits the view frustum into
multiple frustum with different resolution. Adaptive shadow
map [Fernando et al. 2001] replaces an entire shadow map texture
with a hierarchical representation. Perspective shadow map [Stam-
minger and Drettakis 2002] and [Wimmer et al. 2004] warp the light
frustum so that it only stores visibility information inside the view
frustum. Our method can be viewed as a drop-in replacement for
bias mechanism in these shadow maps.

Alias free shadow maps [Aila and Laine 2004] and irregular z-
buffer [Gregory S. Johnson and Burns March 2004] are among
the first to use eye-visible fragments as samples when generating
shadow maps. However, the non-uniform nature of these meth-
ods lack direct support from the GPUs. Evolution of GPGPU tech-
niques makes it possible to implement such ideas on the GPUs us-
ing CUDA [Arvo 2007; Sintorn et al. 2008]. Nonetheless, it is
still not known how to achieve such flexibility by fully utilizing the
GPUs’ rendering pipeline.

A variety of research has explored methods to avoid depth bias.
Wang and Molnar [1994] compare the depth between virtual sam-
ples and samples on second nearest surfaces. Using variance
shadow map (VSM) does not need depth bias but still needs clamp-
ing the variance to a proper value before calculating Chebyshev’s
inequality. The main problem of these methods is that they intro-
duce extra render pass, storage and multiple texture look-ups.

Gautron et al. [2013] generate the depth bias in proportion to the an-
gle between the shaded fragment’s surface normal and the light di-
rection. King [2004] introduces slope scale depth bias which is also
computed based on the fragment’s normal direction and weighted
by the depth slope from neighboring texels. These two methods
do not provide minimal bias for each fragment. Compared to our
approach, they have more false positive and true negative errors.

Woo et al. [1992] propose midpoint shadow mapping which uses
depth difference of the closest and second closest surface as the
depth bias. However, false self-shadowing remains an issue at sil-
houette lines. Weiskopf and Ertl [2003] improve this dual depth
method by adding a constant bound to the midpoint depth bias.
Dual depth layers based methods give a good result but introduce
extra cost due to the extra rendering pass.

False self-shadowing also plagues shadow volume methods, es-
pecially binary shadow volumes. To avoid another look-up into
the shadow map, Wyman and Dai [2011; 2013] use VSVs with a
constant bias to cast surface shadows besides volumetric shadows.
VSVs only store binary values and therefore the techniques men-
tioned above cannot be used to avoid false shadowing. Our method
is applicable because it only depends on local geometry informa-
tion.

3 Adaptive Bias for Traditional Shadow Maps

The amount of bias needed to eliminate false self-shadowing differs
among fragments. To remove shadow acne with minimal false un-
shadowing, we first analyze the bound of depth bias for each frag-
ment and then compute the optimal bias within the bound range.
Subsequently, we shift the fragment using the optimal bias with
an adaptive epsilon before visibility checking. Here we address
the problem for traditional shadow map. Extension to voxelized
shadow volumes will be discussed later.

3.1 Optimal Depth Bias

For a traditional shadow map, as shown in Figure 2 (left), fragment
F1 is shadowed by fragment F2, whose depth is stored in the cor-
responding texel. We call F2 the occluder of F1 or occluder of
the texel. Suppose F1 and F2 lie on the same planar surface P .
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Figure 2: (left) 2D illustration of bias bound for a given fragment
lying on the planar surface. F1 and F2 are two fragments on planar
surface P . L1 represents the bound for a reasonable bias of F1.
L2 represents the optimal bias for F1. (right) 3D Illustration of
adaptive bias computation for a traditional shadow map.

Based on the observation that the shadow cast on F1 only comes
from the area covered by the corresponding texel, the bias for F1

should be bounded by L1. Any bias beyond L1 may cause un-
expected shadow detachment. The optimal bias is defined as L2,
which is the minimal bias needed to move F1 above its occluder
F2. To compute this bias for a fragment, we first locate its potential
occluder. As depicted in Figure 2 (right), given a fragment F1, its
potential occluder F2 can be computed as the intersection of ~R and
P , where ~R is the ray traced from the light source through the texel
center C, and P is the tangent plane defined by F1 and normal N .
The optimal bias is then the depth difference between F1 and F2.

3.2 Adaptive Epsilon

To shift the fragment just above its potential occluder, a proper ep-
silon value is needed besides the optimal bias. However, a constant
epsilon does not work since the depth value is stored non-linearly.
Therefore, instead of using a constant epsilon directly, we trans-
form the constant epsilon adaptively based on the depth compres-
sion function:

ε = f ′(x)∆x, (1)

∆x = sceneScale×K, (2)

where ε denotes the adaptive epsilon, x represents the unnormal-
ized depth value of fragment to be shaded, f(x) is a depth com-
pression function which maps depth values from near and far clip-
ping plane distance to [0, 1], ∆x is the constant epsilon computed
from sceneScale, the length of scene’s bounding box diagonal and
K, an empiric constant. In our implementation, we use standard



OpenGL depth compression function and obtain adaptive epsilon
as follow:

ε =
(lf − depth× (lf − ln))2

lf × ln× (lf − ln)
× sceneScale×K, (3)

where ln and lf represent the light near and far plane distance,
depth represents the normalized depth value for the given fragment.
We set K = 0.0001 in all our experiments.

3.3 Apply Adaptive Depth Bias

Once we have computed the optimal bias and the adaptive epsilon,
we shift the fragment just above the potential occluder before vis-
ibility checking. Below we show the main steps of our algorithm.

SM← generateShadowMap(LightPosition)
for each fragment F with normal N do

P← defineTangentPlane(F , N )
C ← locateTexelCenter(SM, F )
R← defineLightRay(LightPosition, C )
F ′← planeRayIntersect(R, P)
ε← CalcAdaptiveEpsilon(F ′)
isLit ← checkVisibility(SM, F ′, ε)
outputColor ← isLit × shadeFrag(F )

end for

As illustrated in Figure 4 (right), our adaptive bias suffers from over
bias when the shaded fragment’s local tangent plane is almost par-
allel to the light ray, which results in unexpected noise. However,
this only happens to the fragments whose local tangent plane al-
most parallel to light rays, which transports almost no radiance to
the viewer with common materials like Lambertian and Phong.
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Figure 4: (left) Our adaptive bias introduces noises because of
overly shifting. (center) Noises are invisible under Lambertian
shading. (right) Illustration of over shifting.

Assuming fragments lying on planar surface provides a good
approximation to the common situation in many real scenes.
For hemispherical and omni directional light sources, paraboloid
shadow mapping is the common choice. It is straightforward to
apply our method to paraboloid shadow map. As shown in Fig-
ure 3, our method eliminated the false positive error while keep-
ing most shadow details. Compared to slope scale depth bias [King
2004], we bound the bias in a smaller region and thus preserve more
shadow details after shifting.

4 Adaptive Bias for Voxelized Shadow Vol-
umes

Voxelized Shadow Volumes [Wyman 2011] compute both volume
shadows in participating media and surface shadows. Similar to

traditional shadowing algorithms, computing surface shadows with
VSVs suffers from artifacts caused by discretization of geometry.
Unlike traditional shadow maps, VSVs represent shadows with bi-
nary voxel grid. A voxel is occluded only if it contains an occluding
fragment or it lies in the shadow of another occluding object. As
shown in Figure 5, VSVs are defined in an epipolar space. To com-
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Figure 5: Incorrect shadowing in the epipolar coordinate system
for VSVs. Gray voxels mean occluded. The voxel containing frag-
ment F1 is incorrectly shadowed by the voxel containing fragment
F2.

pute the adaptive bias for a fragment F1, we obtain its voxel center
CV1(αc, φc, θc) as described in [Wyman 2011]. With CV1 , we
generate the shadow sample ray ~R to intersect with F1’s local tan-
gent plane P for F1’s potential occluder F2. Ideally we could move
F1 above F2’s voxel V2 to remove false shadowing. However, this
will cause false positive errors as shown in Figure 6. Assume V2’s
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Figure 6: V3 and V2 are two adjacent voxels. C is V2’s voxel
center. F1 and F2 lie on the planar surface P . (left) V2 is occluded.
Using V2 for visibility checking will cause false self-shadowing of
F1. (right) V2 is lit. Use V2 for visibility checking won’t cause false
self-shadowing.

adjacent voxel which is closer to light source is V3. We use V2 for
visibility checking if F2 is behind or on the voxel center. We use V2

for visibility checking if F2 is behind or on the voxel center. Below
shows the shader pseudocode for our algorithm. Figure 7 shows the

VSVs← GenerateVSVs(LightPosition, eyePosition)
for each fragment F with normal N do

P← defineTangentPlane(F , N )
CV ← locateVoxelCenter(VSVs, F )
R← defineLightRay(LightPosition, CV )
F ′← planeRayIntersect(R, P)
C ′V ← locateVoxelCenter(VSVs, F ′)
C ′′V ← adjacentCloserToLightVoxel(C ′V )
if F ′ is behind or on C ′V then

isLit ← checkVisibility(VSVs, C ′V )
else

isLit ← checkVisibility(VSVs, C ′′V )
end if
outputColor ← isLit × shadeFrag(F )

end for

result of applying adaptive bias to VSVs.



Figure 3: Comparison between our depth bias algorithm and commonly used depth bias algorithms in traditional shadow map (top) and
paraboloid shadow map (bottom). Constant depth bias (left) and slope scale depth bias (center) both suffer from false shadowing. Our
method (right) has no visible shadow acne and preserves most shadow details.

Figure 7: Comparison between our adaptive depth bias (right) and
constant depth bias (left) applied respectively to VSVs. Our adap-
tive bias saves more shadow details while erasing shadow acne.

5 Results and Discussion

We implement our method through OpenGL/GLSL in C++ and the
test scenes are rendered on a machine with Intel(R) Cores(TM) i7
CPU @2.93GHz and a NVIDIA graphics card GTX580. The out-
put resolution of all the generated images is 1024×1024. In our test
scenes, VSVs were generated by applying shadow map resampling
and prefix scan as in [Wyman 2011].

Figure 8 and Figure 9 compare our method with constant depth bias
and slope scale depth bias [King 2004] for traditional shadow map
and paraboloid shadow map in a complex scene. We use dual depth
layers method [Weiskopf and Ertl 2003] as reference images. With
a constant bias, objects close to the light still have shadow acne left
while objects far from the light already suffer from heavy shadow
detachment. Slope scale depth method weights the bias by surface
slope scale and gets less false unshadowing. However, the constant

Method Shadow Map Final Shading Overall
Constant 2.095ms 4.232ms 6.327ms

Slope Scale 2.112ms 4.535ms 6.647ms
Ours 2.108ms 5.211ms 7.319ms

Dual Layer 4.716ms 5.174ms 9.890ms

Table 1: Performance measure of Sponza scene (20K polygons).
The scene is lit through traditional shadow mapping with a shadow
map resolution of 1024× 1024.

part still results in visible shadow detachment in a large dynamic
scene. In our test scenes, our method gives results equivalent to dual
depth shadow mapping but with significant improved performance.

Table 1 shows the corresponding performance of the scene depicted
in Figure 8. While constant depth bias adds no overhead, slope
scale depth bias adds very little overhead to overall rendering time.
Dual layers depth bias needs two rendering passes and thus double
the time necessary for shadow map generation. Besides, an extra
texture look-up costs close to 0.6ms, consuming 18% more render-
ing time compared with constant depth bias. In the shading stage,
cost from computing adaptive bias in our method is close to the cost
from an extra texture look-up in dual layers based method. How-
ever, with an extra render pass in shadow map generation stage,
dual layer based method costs close to 50% more rendering time
compared with our method.

Figure 11 shows the performance chart of the scene in Figure 9
(19M polygons). As the shadow map resolution increases, slope
scale depth costs around 5% more rendering time compared with
constant depth bias. Our method costs around 20% more rendering



Figure 8: Sponza illuminated by a traditional light source with a shadow map resolution of 1024 × 1024. (left) Constant depth bias and
slope scale depth bias (center left) suffer from shadow acne and shadow detachment to some extent. Our method (center right) has no visible
false shadows. Dual depth layers depth bias (right) serves as a reference image.

Figure 9: The scene is lit by an omni-directional light source through dual paraboloid shadow mapping with a shadow map resolution of
2048×2048. We move the camera to different parts of the scene. (left) Constant depth bias and slope scale depth bias (center left) both leave
shadow acne on the cube and suffer from false unshadowing on the wall to some extent. Our method (center right) eliminates all the shadow
acne on the cube without shadow detachment on the wall. Dual depth layers depth bias (right) serves as a reference image.

Figure 10: The scene is lit by a omni-directional light source through VSVs with a volume resolution of 1024 × 1024 × 512. (left) Surface
shadows are cast through VSVs with a constant bias. (center) Surface shadows are cast through VSVs with our adaptive bias. (right)
Reference image. Surface shadows are cast with a 2D 8192× 8192 shadow map.



Figure 11: Performance comparison of different depth bias algo-
rithms under different shadow map resolution. The rendering time
is measured in milliseconds.

time compared with constant bias with much less false shadow-
ing. Compare to our method, dual layer depth map gives a nearly
equivalent image quality but it costs 50% more rendering time when
shadow map resolution is under 4096 × 4096 and costs more than
50% when shadow map resolution keeps increasing.

Figure 10 shows the result of applying our adaptive bias to VSVs.
Since VSVs only contain binary value in each voxel, existing depth
bias algorithms, such as slope scale depth bias and dual depth layers
can not be used to eliminate false self-shadowing. So we only com-
pare the rendering result of adaptive bias with constant bias. VSVs’
nature of non-uniform epipolar voxel grid and view-dependence
make constant bias hard to work well. The constant bias is set so
that there remains some false self-shadowing on the arch while al-
ready suffering some shadow detachment near the distant blue cur-
tain. Our adaptive depth bias reduces the false self-shadowing while
preserving more shadow details than fixed constant depth bias.

6 Conclusion

We proposed a method to eliminate false self-shadowing for surface
shadowing algorithms by producing adaptive depth bias. We con-
fine the depth bias for each fragment within a tight bound and com-
pute the minimal bias needed to eliminate shadow acne. We imple-
mented our algorithm for 2D shadow maps as well as 3D voxelized
shadow volumes. Compared to constant depth bias and slope scale
depth bias, our adaptive bias removes more false self-shadowing
and causes less false unshadowing. Our method gives an equiva-
lent result as dual depth layers based method but with much higher
performance.
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