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Figure 1: Shadows in single-scattering homogeneous media, interactively rendered using voxelized shadow volumes. (Left) A sequence from
the 175k triangle Fairy Forest animation, rendered at 118 fps. (Center) Numerous models totaling 1.7M triangles at 102 fps. (Left) The Lucy
statue behind a chain-link fence at 119 fps.

Abstract

Efficient shadowing algorithms have been sought for decades, but
most shadow research focuses on quickly identifying shadows on
surfaces. This paper introduces a novel algorithm to efficiently
sample light visibility at points inside a volume. These voxelized
shadow volumes (VSVs) extend shadow maps to allow efficient, si-
multaneous queries of visibility along view rays, or can alternately
be seen as a discretized shadow volume. We voxelize the scene into
a binary, epipolar-space grid where we apply a fast parallel scan to
identify shadowed voxels. Using a view-dependent grid, our GPU
implementation looks up 128 visibility samples along any eye ray
with a single texture fetch. We demonstrate our algorithm in the
context of interactive shadows in homogeneous, single-scattering
participating media.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: interactive shadows, visibility, participating media,
epipolar space, voxelization

1 Introduction

Computing visibility presents an enormous challenge for render-
ing. Despite decades of effort and orders of magnitude more com-
pute power, many interactive applications still have problems ren-
dering high quality shadowed surfaces. Only very recently have
researchers introduced efficient algorithms that extend this visibil-
ity beyond surfaces and into volumetric media for dynamic scenes.
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Traditional surface shadowing algorithms can extend to volumes,
e.g., repeatedly sampling shadow maps along view rays [Dobashi
et al. 2002] or analytically computing visibility with shadow vol-
ume quads [Biri et al. 2006; Max 1986]. Unfortunately, repeatedly
sampling shadow maps results in redundant, incoherent memory
accesses and shadow volumes continue to consume excessive fill-
rate. This means naive extensions of surface shadow techniques
lead to insufficiently sampled visibility, poor scaling as geometric
complexity grows, or unacceptable performance.

Recent research explores techniques to remove these limitations,
including reducing shadow map sampling using simplified shadow
volumes [Wyman and Ramsey 2008], extruding shadow maps [Mc-
Cool 2000] to reduce shadow volume fill rate [Billeter et al. 2010],
sampling at image-space discontinuities along epipolar rays [Engel-
hardt and Dachsbacher 2010], or using a min-max mipmap [Tevs
et al. 2008] to accelerate ray tracing through a rectified shadow
map [Chen et al. 2011]. Our work takes a similar approach to the
last two techniques, sampling visibility in epipolar space.

This paper introduces a novel algorithm for sampling volumetric
visibility that uses a binary voxel grid in epipolar space. We vox-
elize the scene into this grid, perform a parallel scan along the grid
axis running along epipolar rays, then lookup visibility along the
grid axis parallel to the view rays. Our performance stems from
carefully designing the grid so computations access memory effi-
ciently. This means visibility queries occur via a few cache coher-
ent lookups rather than hundreds of cache oblivious shadow map
queries. We also address numerous robustness issues and compare
different techniques to efficiently sample scenes in epipolar space.

2 Voxelized Shadow Volumes

We propose creating a voxelized shadow volume (VSV) that dis-
cretizes space, storing binary values representing light visibility in-
side each voxel. Figure 2 shows a simplistic example of this pro-
cess. Our key contribution lies in constructing a voxel grid en-
abling efficient creation and queries of these voxelized volumes.

Figure 2 uses standard Cartesian coordinates, giving an easily un-
derstandable visualization, but seriously limits applicability as effi-



Figure 2: A Buddha using (left) conservative surface voxelization
[Schwarz and Seidel 2010] and (center) solid voxelization [Eise-
mann and Décoret 2006], displayed using a heatmap. In either
case, (right) scanning from left to right gives a voxelized shadow
volume, where a voxel stores the binary OR of all voxels to its left.

cient scans only occur along grid axes. Rarely are lights perfectly
oriented along an axis. Our key question is then: can we construct
a grid where light always travels parallel to a grid axis?

Hunt and Marks [2008] showed such a grid, as an acceleration
structure for tracing shadow rays. However, their grid only enables
efficient visibility computation. We also want to query visibility
efficiently. For general grids, identifying voxels intersecting a ray
requires a ray-grid traversal. While impressive optimizations for
traversals exist [Laine and Karras 2010], they still remain a render-
ing bottleneck. But if view rays are oriented along a grid axis, no
traversal is required; we can simply retrieve a row of voxels. Eise-
mann and Decoret [2006] use a perspective grid that allows quick
queries, but their grid fails to allow efficient scans along light rays.

We introduce an epipolar grid that combines these approaches, cre-
ating a “doubly” perspective grid where light rays travel parallel to
one grid axis and view rays travel parallel to another axis.

2.1 Voxel Grid in Epipolar Space

As in Chen et al. [2011], Engelhardt and Dachsbacher [2010], and
Max [1986], we compute shadow visibility in an epipolar coordi-
nate space (see Figure 3). Unlike a Cartesian coordinate system,
where coordinates are defined relative to an origin, our epipolar
space defines coordinates relative to the epipole, the line connect-
ing the eye and light points.

An infinite number of planes, called epipolar planes, contain both
the eye, the light, and the epipole that connects them. Epipolar
planes can be parameterized by angle θ around the epipole. We
define θ relative to some up vector (e.g., the camera’s up).

Within an epipolar plane, we need to ensure efficient implementa-
tion of a parallel scan to quickly create our voxelized shadow vol-
umes. This requires grid axes to run parallel to light rays, implying
a radial set of angular samples emanating from the light (see Fig-
ure 4). We define this angle, φ, relative to the epipole.

Similarly, to look up visibility along a view ray in a cache-friendly
manner the eye rays should travel parallel with one set of axes. This
implies a radial set of angular samples emanating from the eye. We
also define this angle, α, relative to the epipole.

This gives us an epipolar space (α,θ,φ) that we can discretize, and
allows efficient scanning along all light and eye rays. Initially, we
choose (α,θ,φ) ∈ [0..π] × [0..2π) × [0..π]. In other words, we use
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Figure 3: The epipole connects the eye and light points. The
epipole plus any ray from either the light or eye forms an epipo-
lar plane. Epipolar planes intersect both the image and shadow
map as a straight line (in red). Any pixel on these lines corresponds
to an epipolar line that lies in that epipolar plane. We define epipo-
lar planes by an angle θ relative to some global vector (e.g., the
camera up vector).
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Figure 4: We specify locations using three angles α, θ, and φ. α is
the angle between the epipole and view ray, θ defines the epipolar
plane, and φ is the angle between the epipole and light ray.

epipolar half-planes, with α and φ in [0..π] on each half plane. Our
visibility technique below is independent of sampling rates along
α,θ, and φ. Interestingly we found uniform sampling of all three
angles worked well, though Section 4.4 discusses alternate sam-
pling schemes.

Our code converts an eye-space vertex to epipolar space as follows:

Given eye-space light and vertex position: esLPos, esVPos

vec3 toLight = normalize( esLPos );

vec3 toVert = normalize( esVPos );

vec3 upVec = normalize( cross( toLight, vec3(0,0,-1) ) );

vec3 forwardVec = cross( upVec, toLight );

float α = acos( dot( toLight, toVert ) );

float θ = atan( dot( forwardVec, toVert ), dot( upVec, toVert ) );

float φ = acos( dot ( -toLight, normalize(esVPos-esLPos) ) );

2.2 Voxelized Shadow Volumes in Epipolar Space

Now that we have an epipolar space that meets our constraints for
fast shadow evaluation and queries, we discuss creation of our vox-
elized shadow volumes. The approach is straightforward, using the
same method outlined in Figure 2, only in epipolar space instead of
Cartesian coordinates.

VSVs require three passes, visualized in Figure 5. The first two cre-
ate the volume, and the third queries the volume during rendering:

1. Voxelize scene geometry into epipolar space.

2. Do a prefix scan (with a bitwise OR) along light rays.
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Figure 5: Creating voxelized shadow volumes, visualized on a single epipolar plane. The original geometry (left) is voxelized into a binary
representation (left center). Each radial row of voxels from the light is scanned using a bitwise or operator (right center) to create the
voxelized shadow volume. This consists of green and orange voxels, which are regions shadowed by the original geometry. During rendering,
voxels can be queried along the axis emanating from the eye (right). Voxels along these rays are packed into 128-bit unsigned RGBA texels
to allow simultaneous lookups of 128 visibility samples.

3. Query the volume by reading 128-bit RGBA texels, each cor-
responding to 128 visibility samples along the view ray.

2.2.1 Step 1: Voxelizing geometry

Researchers have proposed various voxelization techniques [Dong
et al. 2004; Eisemann and Décoret 2006; Schwarz and Seidel 2010].
Other than voxelizing into epipolar space, we do nothing novel in
this step. We use the code from Section 2.1 to transform geometry
from eye-space into epipolar space and use existing voxelizers.

As in many non-Cartesian domains, the epipolar transform does not
preserve straight lines. This means triangles have curved edges, and
a rasterizer may incorrectly voxelize large triangles. For the rela-
tively small triangles in most meshes, artifacts are imperceptible.
We subdivide meshes with larger triangles, like big walls, as a pre-
process. Tessellation stages on modern GPUs could instead do this
dynamically and adaptively. We discuss further implementation is-
sues arising from curved epipolar space in Section 4.1.

We tested both Eisemann and Decoret’s [2006] screen-space vox-
elization and Schwarz and Seidel’s [2010] conservative surface
voxelization (see Figure 2). Screen-space voxelization requires wa-
tertight meshes, limiting use to well behaved models. Conserva-
tive voxelization works for all meshes but greatly degrades perfor-
mance. In Section 4.1.3 we propose a shadow map resampling to
replace voxelization for populating the epipolar grid.

2.2.2 Step 2: Scan along light rays

Figure 6 shows an example scene voxelized in epipolar space. As
in Eisemann and Decoret [2006], we store voxels in a 2D texture,
with each 128-bit RGBA texel containing 128 samples in the φ di-
mension. Each row in the texture corresponds to one epipolar plane
θ. Along each row, α varies between 0 to π from left to right.

With this voxel representation, creating a VSV only requires scan-
ning from left to right along each row. Each sample in a VSV stores
a binary value identifying if that voxel is shadowed. Given a scene
voxelization in epipolar space, a particular voxel (αi, θj , φk) is
shadowed when an occluder exists on the same epipolar plane θj

along the same light ray φk. This can be written mathematically:

∃s ∈ [0..i], such that V(αs, θj , φk) == 1, (1)

where V(α, θ, φ) is the voxel value at (α,θ,φ). Equivalently, this
test can be written as a sum:

i
X

s=0

V(αs, θj , φk) > 0, (2)

which suggests using a prefix sum. A sum requires more than one
bit per voxel, so we instead reformulate this scan using an or (in-
stead of addition) operator. Our test for occlusion becomes:

V(α0, θj , φk) | V(α1, θj , φk) | ... | V(αi, θj , φk) == 1. (3)

θ

α
ϕ

Figure 6: (Left) A scene with four complex models. (Center) The
models voxelized in epipolar space. Each row represents a single
epipolar plane θi, with α running horizontally with the light (α=0)
at left. Each texel stores multiple bits, representing samples in φ.
Visualized pixel intensity corresponds to the number of φ bits set
for each (α, θ) pair. (Right) We scan along rows to create a VSV,
storing the bitwise or of all pixels to the left.

This can also be understood visually, in Figure 5, asking for each
voxel, “is there an orange voxel between myself and the light?”

We perform our scan via a multipass OpenGL-based variant of Har-
ris et al. [2008]. Our variant creates a mip-chain of VSVs as a side
effect; we do not currently use these, though we expect future work
on VSVs may utilize such mip-chains.

2.2.3 Step 3: Query visibility

Given a voxelized shadow volume, as in Figure 6, each uvec4 texel
stores 128 binary visibility samples along the corresponding view
ray (i.e., a row of voxels with only varying φ). Thus a single texture
fetch reads 128 visibility samples. Using bit twiddling we can de-
termine light visibility at various points along the ray. For instance,
Figure 7 counts shadowed bits to visualize the shadow volume and
uses a single-bit lookup to render surface shadows.

We described VSV construction using 128 φ-samples, using a sin-
gle 128-bit RGBA texture. With uniform sampling, 128 samples
rarely suffice to avoid aliasing. All our results use 512 φ-samples.
Larger volumes are easily created using multiple render targets to
store additional bits per texel (e.g., as in Eisemann [2006]).

3 Shadows in Participating Media with VSVs

For inhomogeneous single-scattering media, the airlight equation
describes the light scattered towards the eye [Nishita et al. 1987]:

Ls =

Z d

0

σse
−tσ

V (t)ρ(t)Lin(t)dt, (4)

where σ = σs + σa is the extinction coefficient, σs and σa are
the media’s scattering and absorption coefficients, ρ(t) is the phase



Figure 7: Voxelized shadow volumes can compute surface shadows
(top) by querying the voxel containing each fragment. (Bottom) The
VSV is visualized by counting shadowed voxels along each view ray.
From left to right, we use 128, 256, or 512 angular samples in φ.
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Figure 8: The inscattering Ls depends on distance d to the sur-
face and the angle α between the epipole and view ray. Along this
ray, we integrate over t values between 0 and d. Each t had a cor-
responding angle from the light φt, and possible occlusion events
are represented by V(t). We compute V(t) by querying our VSV,
V(α, θ, φt), where θ is the epipolar plane containing this ray.

function, Lin(t) is the light intensity, and V (t) is a binary visibility
accounting for shadows (see Figure 8).

Ignoring visibility, Equation 4 can be solved analytically [Pegoraro
et al. 2009; Sun et al. 2005]. Including visibility, the integral can
be split into separate pieces [Biri et al. 2006], one per lit segment
along a view ray, or sampled via ray marching:

Ls ≈
N

X

i=0

σse
−tiσ

V (ti)ρ(ti)Lin(ti)∆ti. (5)

Dobashi et al. [2002] suggested an approximation that pulls visibil-
ity out of the summation. Baran [2010] and Chen [2011] improved
the decoupling between visibility and scattering with a low rank
SVD factorization. Since the sum varies smoothly along epipolar
rays, Engelhardt and Dachsbacher [2010] sample Ls sparsely along
epipolar rays and interpolate. VSVs can provide the visibility for
any of these techniques, including the brute force Riemann sum in
Equation 5.

In our examples, we compute scattering using either the Hoffman
and Preetham [2003] or uniform (ρ = 1

4π
) phase functions.

4 Implementation Details

VSV implementation requires some care, due to various robustness
issues. Some insignificant numerical precision issues in perspec-
tive space become showstoppers in epipolar space. Other precision
issues cause aliasing that is fixable with careful parameter choices.
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Figure 9: (Top) A triangle overlapping the top or bottom of the
voxel buffer requires splitting for correct voxelization. (Bottom)
A triangle occluding the light must be split to include the entire
epipolar singularity. (Left) A problem triangle, (center) the naive,
incorrect voxelization, and (right) the correctly subdivided triangle.

4.1 Rendering to a Cylindrical Texture

As we store our voxel grid in a 2D texture, the left edge represents
α = 0, the singularity at the epipole (see Figure 6). As geome-
try approaches the light, it spreads to cover the entire left column.
Additionally, the top and bottom edges both represent θ = 0. As
geometry disappears off the top texture edge, it reappears at the
bottom.

This section describes two key details needed to ensure correct ren-
dering under these distortions: triangle splitting and conservative
voxelization. We also describe an alternative to voxelization that
avoids artifacts by resampling the shadow map.

4.1.1 Triangle Splitting

While tessellating triangles to avoid distortion from curved edges in
epipolar space is not strictly necessary, two other types of triangle
splits must occur to ensure correctness (see Figure 9).

When triangles overlap the top or bottom of the voxel texture they
wrap around, occupying voxels near both buffer edges. Voxelizing
triangle ∆ABC fails when individually converting A, B, and C
into epipolar space and connecting them. Instead, we voxelize tri-
angles ∆ABC′ and ∆A′B′C, where A′, B′, and C′ are virtual
vertices outside the texture. These virtual vertices have identical α
and φ coordinates, but the θ coordinates vary: θ′ = θ ± 2π.

A triangle shadowing the eye includes the epipole. Ideally, our
epipolar singularity spreads such triangles over the left side of the
voxel buffer, but naive voxelization fails to include any of the sin-
gularity. Instead, we subdivide such triangles to explicitly include
the entire epipolar singularity. Since, by definition, any triangle oc-
cluding the epipole intersects θ = 0, we also need to introduce two
virtual vertices.

Failing to subdivide problem triangles in both cases introduces light
leakage (see Figure 10). Failure to subdivide triangles intersecting
θ = 0 also introduces spurious shadows, as the occluder triangle
flips to cover wrong epipolar planes.



Figure 10: The heptagonal toroid with (left) correct VSVs and
(right) artifacts from failing to subdivide problem triangles. (Top)
Light leakage through the surface. (Bottom) Triangles overlap the
epipole, behind the light, introducing spurious shadows.

4.1.2 Conservative Voxelization

As in any sampling, geometry may fall between voxels in the epipo-
lar grid. Yet this geometry still casts shadows, and from frame to
frame shadows from poorly sampled triangles flicker in and out, as
movement causes occasional voxel coverage. Additionally, screen-
space voxelization via a hardware rasterizer may cull silhouette tri-
angles (i.e., those with constant α), despite potentially large shad-
ows. Using conservative voxelization [Schwarz and Seidel 2010]
addresses these issues, reducing artifacts.

More importantly, as geometry approaches the epipole singularity,
it gets stretched quite thin in our epipolar voxel buffer. As with nat-
urally tiny geometry, these stretched triangles are poorly sampled.
This contributes to the light leakage seen in Figure 10. Conservative
voxelization guarantees coverage of appropriate nearby voxels, and
when combined with the triangle subdivisions from Section 4.1.1
eliminates all light leakage.

4.1.3 Voxelization Via Shadow Map Resampling

We see voxelization into the epipolar domain as the most flexi-
ble approach for VSV creation, e.g., allowing natural extensions
to handle deep shadow maps [Lokovic and Veach 2000]. How-
ever, the robustness issues from Sections 4.1.1 and 4.1.2 plus the
performance demonstrated below suggest using a more specialized
approach when only opaque occluders are needed.

Consider the requirements for valid VSVs. For the scan along a
light ray to produce correct results, voxels containing geometry
closest to the light must be marked occupied. Shadowed surfaces
need not be voxelized, as the scan sets those voxels.

By definition, shadow maps store the geometry closest to the light
along any ray. Thus, we can voxelize these surfaces simply by re-
sampling the shadow map, looking up the closest occluder along
each light ray (θj , φk) and setting the voxel bit at V(αd, θj , φk).
Here αd is the α sample corresponding to the shadow map depth in
direction (θj , φk).

To do this we render an array of Nθ × Nφ points, where Nθ and
Nφ are the voxel buffer resolutions in the θ and φ dimensions. For
each j ∈ [0..Nθ] and k ∈ [0..Nφ], we compute the light ray in
direction (θj , φk) and lookup the corresponding depth djk in the
shadow map. We unproject this shadow map sample back into eye
space, and use the transform from Section 2.1 to convert this back
to epipolar space to find the αd corresponding to djk. We then set
the bit at V(αd, θj , φk).

This approach robustly handles any rasterizable geometry and nat-
urally handles the epipolar singularity. This approach is similar to

epipolar plane

α
max

α
v

V

epipolar p
lane

ϕ
max

ϕ
v

V

epipolar p
lane

Figure 11: By limiting the ranges of α and φ, per frame, based
on light position and viewing parameters, we can focus samples on
occluders affecting the image.

Billeter et al. [2010]; instead of generating an analytical light vol-
ume, we generate a discrete shadow volume.

4.2 Precisions Issues Converting to Epipolar Space

Our code to convert eye-space to epipolar coordinates in Section 2.1
must be carefully implemented to avoid precision errors. In partic-
ular, despite normalized vectors, the parameters to the acos func-
tions may lie outside the valid [−1..1] range, and must be clamped.
Depending on voxelization engine implementation, NaNs from an
out-of-range acos either lead to ignored triangles, increasing light
leakage, or introduce large triangles covering all epipolar space, in-
correctly shadowing the scene and consuming significant fill rate.
When generating input vertices for our voxelizers, we carefully
clamped inputs to all trigonometry functions to avoid such preci-
sion issues.

4.3 Dynamic, Angular Sampling Ranges

Many algorithms relying on screen-space sampling limit them-
selves to geometry visible on screen. One advantage to sampling
α, φ ∈ [0..π] and θ ∈ [0..2π) is that our epipolar voxelization cap-
tures all scene geometry. Unfortunately, this wastes voxel samples
on geometry with no contribution to visible pixels, reducing sam-
pling quality in more important regions. Dynamic, per-frame range
selection along all three angles allows more focused samples near
occluders that shadow visible geometry (see Figure 11).

First, the angle between light and view rays ranges α ∈ [0..π].
However, a limited subset of this range is visible on screen. Scenes
with visible lights only use samples with α less than the field of
view. Because we scan left-to-right along epipolar planes, only
samples αs for 0 ≤ s ≤ i affect current ray αi. We sample
α ∈ [0..αmax], for αmax = max(αx,y) the maximum angle over
all image pixels (x, y). This allows more dense sampling along the
α range, greatly reducing angular aliasing (see Figure 12).

Second, sampling epipolar planes θ ∈ [0..2π) is vital only when
the epipole lies inside the view frustum; we only need compute the
VSV for visible epipolar planes. Given our parallel scan consumes
a significant percentage of frame time, limiting scans to important
visible epipolar planes significantly improves performance. We did
not implement a generally applicable dynamic sampling in θ, partly
because more adaptive sampling schemes seem promising. Our re-
sults all use θ ∈ [0..2π).

Finally, φ samples lie in [0..π] whenever the view frustum contains
the light, as in most of our scenes. However, when the light lies be-
hind the camera, visible φ samples may be limited to a tiny range.
As the φ sampling rate strongly affects VSV quality, a fixed φ sam-
pling severely undersamples shadows in such scenarios. Instead,



Figure 12: Insets show (center) sampling α ∈ [0..π], resulting in
angular jaggies along silhouettes and (right) sampling α dynami-
cally, reducing artifacts by focusing samples in the view frustum.

we sample φ ∈ [0..φmax], for φmax = max(φx,y) the maximum
angle for geometry visible at pixels (x, y).

4.4 Alternative, Non-Uniform Angular Sampling

Our implementation, even using the per-frame dynamic range sam-
pling from Section 4.3, relies on uniformly-spaced angular sam-
pling in all three dimensions. In other words, if we use N samples
for α ∈ [0..αmax], then αi = αi−1 + 1

N
αmax.

Engelhardt [2010] and Baran [2010] non-uniformly distribute θ
samples to ensure epipolar planes always lie less than one pixel
apart. This is orthogonal to our work; we did not implement it,
though it could easily be incorporated and would improve quality.

Our initial work sampled φ using various non-uniform schemes.
Most gave significantly worse quality. One obvious approach might
sample φ more densely close to 0, perhaps based on cos φ. We ex-
pected this to reduce angular aliasing, but our experiments failed to
show a noticeable improvement. We also searched for a φ param-
eterization allowing cancellation of additional terms from Equa-
tion 5, though due to close coupling of α and φ in the scattering
equation, we failed.

Non-uniform sampling in α dramatically impacts image quality, as
samples are directly visible in the rendering. Engelhardt and Dachs-
bacher [2010] found samples at depth discontinuities most impor-
tant, as shadows change there. They sample at these discontinuities
and interpolate between samples, essentially using a scan to find
nearby samples. Since voxelization finds geometry discontinuities
and VSV construction performs a scan, we essentially generalize
their sampling scheme to accurately compute shadow bounds. We
found other non-uniform α samplings increased aliasing at object
boundaries.

5 Results and Discussion

We implemented voxelized shadow volumes using OpenGL and
CUDA. All timings (see Table 1) use a 2.6 GHz quad-core Xeon
X5335 and a GeForce 580 GTX. Unless otherwise specified, tim-
ings use a 10242 resolution display, a 20482 dual paraboloid
shadow map [Brabec et al. 2002], and epipolar voxel buffers with
512 samples in α and φ and 2048 samples in θ. Figure 13 shows
VSVs applied to various scenes.

Table 1 compares VSV creation cost using all three methods: re-
sampling the shadow map, a CUDA-based conservative voxeliza-
tion, and screen-space voxelization. Resampling the shadow map
consistently performs best. Screen-space voxelization has similar

Rendering Step Scene: Complex Models in Box
Using varying shadow map resolution

512
2

1024
2

2048
2

4096
2

8192
2

Shadow Map 2.5 2.5 2.6 2.7 3.6
Voxelize: From SM 1.8 1.9 1.9 2.3 2.3

Table 2: Varying shadow map size barely affects performance. Tim-
ings are in milliseconds.

Rendering Step Scene: Heptagonal Toroid
Varying number of θ samples

128
2

256
2

512
2

1024
2

2048
2

Voxelize: From SM 0.2 0.4 0.8 1.5 2.9
Voxelize: CUDA 2.5 2.9 4.4 7.8 15
Voxelize: SSVox 1.0 1.0 1.0 1.2 2.2
Scan VSV 1.0 1.1 1.3 1.7 2.7

Table 3: Varying the number of epipolar planes greatly affects per-
formance for all of types of voxelization. As we scan along each
plane, θ sampling also affects the parallel scan. Timings are in
milliseconds.

performance characteristics but is mostly unusable, as in practice
many models are not watertight. Schwarz and Seidel [2010] kindly
provided conservative voxelization code, but it performs poorly on
scenes with high depth complexity or many small triangles in a con-
centrated region.

Resampling the shadow map does not slow significantly when vary-
ing shadow map resolution (see Table 2). The main cost is addi-
tional fill rate to render the map, as our resampling technique uses
a fixed number of shadow map samples for any voxel buffer resolu-
tion, one sample per (α,θ) pair. The slight cost increase in Table 2
likely stems from poorer cache coherence for big shadow maps.

Increases to voxel buffer resolution significantly impact perfor-
mance (see Table 3). Fill rate costs generally increase linearly for
larger voxel buffers, though the screen-space and conservative vox-
elizers have fixed costs that mask this relationship (e.g., CUDA
interop overhead and per-vertex transforms to epipolar space).
Changes in other buffer dimensions affect performance in slightly
different ways, outlined in Table 4.

Figure 7 shows we can render surface shadows with VSVs. Gener-
ally this does not make sense, especially when generating the VSV
by resampling a shadow map. Even using the other creation meth-
ods, the voxel grid view-dependence means surface shadow aliasing
varies with viewpoint.

Compared to other interactive shadowing techniques, voxelized
shadow volumes use a discrete representation. This introduces
aliasing not apparent in analytical shadow volumes techniques,
such as Billeter et al. [2010]. Since we sample in similar epipo-
lar spaces, our discretization artifacts resemble those of Chen
et al. [2011] and Engelhardt and Dachsbacher [2010]. Tech-
niques sampling coarsely in image space (e.g., Wyman and Ram-
sey [2008]) tend to avoid aliasing by blurring shadow details (see
Figure 14), which we need not do. Our remaining aliasing mainly
stems from poor sampling from elongated voxels near the epipole.
This manifests as poor φ sampling for objects near the light, as
in Figure 15. Unlike Chen [2011], we need not fall back to brute
force ray marching in this region. Only for dense media (as in our
images) will some discretization becomes visible, though in anima-
tions it is usually transient. We suspect bilateral filtering in either
epipolar or screen space could address this.

Given sufficient sampling density in the epipolar domain, our vox-
elized shadow volume gives results equivalent to ray tracing (see
Figure 16), but with significantly improved performance. As with



Scene Poly Individual Step Times (in milliseconds) Total Frame
Count Shadow G Voxelize to Epipolar Space Scan Compute (Voxelizing from

Map Buffer From SM CUDA SSVox VSV Ls shadow map)

24-Cell Tesseract Animation 123 k 0.4 0.7 1.3 120 1.0 2.7 0.7 5.8 ms
Chain Link Fence + Lucy 682 k 1.1 1.4 2.0 31 1.9* 2.7 0.7 7.9 ms
Complex Models in Cornell Box 1700 k 2.6 2.1 1.9 10 3.3 2.7 0.7 9.8 ms
Fairy Forest Animation 175 k 0.8 3.0 3.1 150 3.9* 2.7 0.7 10.1 ms
Hand and Figure Animation 120 k 0.3 1.3 1.4 1.8 0.5* 2.7 0.7 6.3 ms
Heptagonal Toroid 573 k 0.9 0.9 2.9 15 2.2 2.7 0.7 7.9 ms
Indoor Garden 51 k 0.4 1.6 3.4 580 n/a* 2.7 0.7 8.8 ms
Stanford Dragons 575 k 1.2 1.9 1.4 3.2 1.5 2.7 0.7 7.7 ms

Table 1: Performance breakdown of individual algorithm steps for our scenes. All timings use an output resolution of 10242, 20482 dual
paraboloid shadow maps, and a 512 × 2048 × 512 epipolar voxel buffer (i.e., θi is sampled for i ∈ [0..2048]). Steps include shadow
map creation, G-buffer creation, voxelization into epipolar space, performing a parallel scan to compute the VSV, and a final step that
computes scattering and outputs a final color. Timings are given for the three different voxelization techniques: shadow map resampling
(From SM), a conservative voxelizer (CUDA), and screen-space voxelization (SSVox). Screen-space voxelization fails for non-watertight
meshes; starred timings represent scenes with significant artifacts that may not represent true voxelization cost (the indoor garden scene
fails catastrophically). The total frame time sums all steps, voxelizing via shadow map resampling, which performed consistently well in all
scenes. Due to rounding, the total cost does not equal the sum of all steps.

Figure 13: Renderings using voxelized shadow volumes in various scenes: (left) hand and figure animation, (left center) tesseract animation,
(right center) simple Buddha scene with anisotropic (i.e., textured) light, and (right) the indoor garden.

Rendering Step Varying Sampling Rate In
α θ φ

Voxelize: From SM O(1)1 O(θ)2 O(φ)2

Voxelize: CUDA O(α)2 O(θ)2 O(1)3

Voxelize: SSVox O(α)2 O(θ)2 O(φ)4

Scan VSV O(log α)5 O(θ)2 O(φ)4

1 No increase in shadow map samples. 2 From increased fill rate.
3 Varies with cache coherence. 4 Extra memory traffic to framebuffer.

5 Scan steps increase logarithmically along scan direction.

Table 4: How performance varies with voxel buffer resolution.

other visibility techniques, we need not limit VSVs to comput-
ing visibility in participating media from isotropic lights (see Fig-
ure 13), as visibility computation is usually orthogonal to the Lin

term in Equation 5. Times for the final render step in Table 1 use
Dobashi’s [2002] factored visibility. This works poorly for textured
lights, so in those cases we coarsely step along each view ray ac-
cumulating light color, increasing Ls computation to 5.3 ms. An
incremental computation along epipolar planes [Baran et al. 2010]
would speed this step.

6 Conclusions and Future Work

We introduced voxelized shadow volumes, an algorithm based on
a new discretization of epipolar space. We voxelize the scene into
this space, and scan along light rays to efficiently compute a vox-
elized representation of a shadow volume. Querying this volume
provides fast, cache coherent shadow samples throughout the scene.
We demonstrate an application of VSVs to compute visibility for

Figure 14: Compare (left) voxelized shadow volumes with (right)
Wyman and Ramsey [2008]. (Top) We handle all geometry for
equivalent cost, not focusing computation on designated shadow
casters. (Bottom) We do not blur in image space, allowing sharper
crepuscular rays.

interactive shadows in single-scattering homogeneous participating
media. While we see VSVs as more general, one could view them
as a drop-in replacement for prior shadow query techniques (e.g.,
the 1D min-max mipmaps from Chen et al. [2011]).

We see many future extensions for VSVs, including filtering tech-
niques in the epipolar voxel buffer, applications to other domains
such as soft shadowing, adaptive sampling to improve performance
and quality using fewer samples, and exploring efficient implemen-
tations with non-binary voxels (e.g., for deep shadow maps).
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