
Interactive Refractions with Total Internal Reflection

Scott T Davis∗

University of Iowa
Chris Wyman†

University of Iowa

(a) (b) (c)

Figure 1: Comparison with (a) our approach with 3 internal bounces, (b) image-space refraction [20] and (c) ray tracing with 8 samples per pixel.

ABSTRACT

A requirement for rendering realistic images interactively is effi-
ciently simulating material properties. Recent techniques have im-
proved the quality for interactively rendering dielectric materials,
but have mostly neglected a phenomenon associated with refrac-
tion, namely, total internal reflection. We present an algorithm to
approximate total internal reflection on commodity graphics hard-
ware using a ray-depth map intersection technique that is interac-
tive and requires no precomputation. Our results compare favorably
with ray traced images and improve upon approaches that avoid to-
tal internal reflection.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: interactive refractions, total internal reflections, binary
search, graphics hardware

1 INTRODUCTION

The computational complexity of photorealistic rendering currently
is too demanding for an interactive application. Such applications
are designed to either forgo realism or approximate the relevant re-
alistic parts. Given enough computing time, photorealistic image
generation is possible and typically involves the use of an offline
renderer using some variant of the ray tracing paradigm. Con-
versely, interactive rendering conventionally runs on a graphics pro-
cessing unit (GPU) using a rasterization based algorithm.

A photorealistic rendering requires many cooperating components,
but, most importantly, must capture the behavior of light in a scene.
Material properties can alter the direction of light rays and thus
place more burden on a renderer where coherency is generally more

∗e-mail: scott-davis-1@uiowa.edu
†e-mail:cwyman@cs.uiowa.edu

efficient such as is the case with the projection matrix in rasteriza-
tion. A dielectric is a common real world material that bends light
and thus offers realistic renderers a challenging material to simulate
efficiently. Dielectrics mostly refract incident light although some
is reflected and the rest is absorbed. The phenomenon of total inter-
nal reflection (TIR) takes place when the dielectric refracts no light,
but rather mostly reflects and to a small extent absorbs. TIR occurs
frequently in dielectric objects and thus is important for realism.

Previous approaches to interactive refraction have placed assump-
tions on the light propagation, the 3D model, or require offline pre-
processing. Typically these approaches avoid handling TIR. We
propose a technique for generating interactive refractions specifi-
cally designed to approximate TIR. Our technique involves an it-
erative search in 2D for ray intersections using depth maps to rep-
resent objects. See Figure 1 for a comparison of our results with
image-space refraction [20] and ray tracing. Notice how our ap-
proach more closely resembles the ray traced image, especially in
areas of TIR.

In the following, we discuss work in interactive refraction and iter-
ative techniques followed by our approach. We conclude with our
results, a discussion, and our ideas for future work.

2 PREVIOUS WORK

Reflections and refractions in computer graphics have long been ac-
complished through ray tracing [19]. Ray tracing offers an elegant
method to handle TIR by recursively tracing rays through a dielec-
tric until an intersection with a diffuse material. The drawback to
ray tracing is the computational requirement that prohibits interac-
tivity on commodity hardware.

Commodity graphics cards use rasterization to generate images.
With rasterization, dielectrics largely are approximated using only
the front side of the object [11], [13] or using the front and back
sides of an object [20]. Dividing an object into two sides, a front and
a back, gives much more plausible results than using the front side
only, although it still cannot faithfully represent all objects from all
viewpoints.

Krüger et al. [10] present a GPU algorithm for reflection and refrac-



tion using a multi-pass approach that rasterizes photon paths into a
texture. This paper alleviates the two sided refraction restriction by
using depth peeling. Szirmay-Kalos et al. [18] present an approx-
imate ray tracing algorithm for the GPU that handles refraction by
creating a distance impostor around a refractive object. Then they
use an iterative technique to determine the distance a ray travels
inside an object. Chan and Wang [2] use a similar data structure
called a geocube that, with some extra preprocessing, allows for ef-
ficient and more accurate distance estimation. Although Estalella
et al. [4] do not handle refractions and therefore is not directly re-
lated, they do present a technique for interactive reflections using
an iterative approach.

An early approach to refraction by Kay and Greenberg is the trans-
parency algorithm [9]. Although it can handle an arbitrary num-
ber of refractive interfaces, it requires processing geometry strictly
back to front, the assumption that light travels parallel to the z axis
when not in a refractive medium, and also that an object has con-
stant thickness.

Diefenbach and Badler [3] propose a multi-pass technique to han-
dle planar refractors where light is assumed to refract exactly twice
thereby shifting incident light to a parallel transmission direction.
Guy and Soler [6] discuss rendering gemstones with complex light-
ing behavior, but restrict the geometry to convex and faceted ob-
jects.

Hakura and Snyder [7] present a hybrid algorithm of rasterization
and ray tracing that capitalizes on the GPU’s efficient environment
mapping for distant reflections and refractions and ray tracing for
quality required for close-ups. Using ray tracing in a preprocess to
determine where light exits an object, Ohbuchi [12] then uses an
iterative technique to approximate a final intersection. After sam-
pling a sufficient number of light paths through a refractive object
offline, Génevaux et al. [5] compress this data using spherical har-
monics and then are able to decompress online at interactive rates.
These algorithms require ray tracing in their precomputation and
are therefore currently infeasible for realtime applications.

Recently Hu and Qin [8] have developed a similar algorithm to ours
that uses a binary search to determine ray-object intersections with
a depth map. Their work differs from ours in three main ways: 1)
the heuristic they have chosen to determine front versus back fac-
ing intersections, 2) their choice of endpoint for the binary search
does not involve clipping, and 3) they do not discuss how to handle
multiple internal bounces.

3 ALGORITHM

Image space refraction utilizes textures to represent geometry
where the advantage is that complex 3D geometry is reduced to
a discrete 2D structure very suitable for current GPU processing.
The textures typically used are depth maps for positions and normal
maps for surface normals. The assumption from [20] is an object
has two sides: a front and a back. While this is a coarse approx-
imation for some concave geometry from some viewpoints, it still
proves to generate plausible effects. We continue in this vein us-
ing 2 passes to generate 4 textures: front facing normals and depths
and back facing normals and depths (Figure 2). To facilitate nearby
scene geometry, we render color and depth maps for nearby scene
geometry in an additional pass. The fourth and final pass is wherein
we compute refractions and total internal reflections using the pre-
vious passes as input.

To compute refractions, we use Snell’s Law

ηi sinθi = ηt sinθt

pass 1 pass 2 pass 3

final pass
Figure 2: Depth and normal maps are generated in a first pass for the back
facing geometry. In the next pass, we generate depth and normal maps for
front facing geometry. In the third pass, we generate a nearby geometry
depth map and color map and in the fourth and final pass, we render refrac-
tions with our technique.

to determine a transmitted angle (θt ) when given an incident an-
gle (θi) and the indices of refraction of the two participating media
(ηi,ηt ). From a front facing refractive surface pointp, a simple
fragment shader computes a transmitted directionT . The rayp+tT
intersects the scene at somet = d. Approximating this distanced
(see Figure 3(d)) is the basis for most image space refraction tech-
niques. Along with finding this distance, one must determine when
TIR occurs.

The critical angle for a dielectric is the maximum angle incident
light can impinge a surface without undergoing TIR (see Figure 4).
Light incident at the critical angle transmits at 90◦. It is possible,
then, to determine the critical angle with Snell’s Law for a dielectric
within a certain media. Note that TIR is impossible whenηi < ηt

because sin−1 x is defined only forx ∈ [−1,1]. This means that TIR
can only occur when light is moving from a more refractive to a less
refractive medium. The formula for the critical angle is

θcritical = sin−1 ηt

ηi
.

Image-space refraction [20] approximates the distanced by linearly
interpolating between two distances, namely the value in the back
facing depth map (dv) at the texel where the first intersection point
projects and the distance in the negative normal direction to an in-



(a) (b) (c) (d)

Figure 3: Compute the transmitted direction using the incident direction, normal, and indices of refraction and clip this ray against the view frustum (a). Use a
binary search (b) to approximate the intersection between the transmitted ray and the object. Next this search is run on the front facing depth map (not shown)
and the intersection point most aligned with the transmitted vector is chosen as the intersection. With this intersection point, lookup the normal stored in a texture
and compute (in this case) a reflected vector. Now clip the vector and repeat the steps from (b) and (c) to find the next intersection. The actual intersections and
ray directions are shown in (d).

Figure 4: Light approaches the interface between two refractive media.
When light is incident at an angle less than the critical angle (red), most
light is transmitted through. Light incident at the critical angle (blue) trans-
mits perpendicular to the surface normal and light incident greater than the
critical angle totally reflects back into the surface.

tersection (dn) (see Figure 5). While the first can be computed in-
teractively per fragment in two rendering passes, the second value
must be precomputed offline. The problem with this technique is
the approximated is too coarse and there is no guarantee thatd
follows the interpolation of the two distances. This leads to inaccu-
rate refractions and ultimately the inability to recursively bounce
for TIR. Further,dv makes little sense to use for almost any of
the internal light bounces. Our algorithm strives for more accu-
rate refractions at fast enough speeds as to allow for multiple light
bounces and retain interactivity.

A solution to findd is to rasterize in 2D along the ray comparing the
z value on the ray to the z value in the depth texture at the current
projected point. When these two values are within a certain thresh-
old, an intersection is found. The speed of the solution is heavily
dominated by the number of texture lookups, where there is one
per iteration (rasterization step) making this solution too slow for
interactive applications.

We seek to reduce the number of iterations to find an intersection by
using a binary search similar to that described in [15]. The binary

(a) (b)

Figure 5: Image-space refraction uses dn (the distance in the negative nor-
mal direction to an intersection) and dv (the distance between the depth of
the current pixel to the depth of the pixel on the backfacing geometry) to ap-
proximate the true refracted distance d. The first refracted ray is shown in
a) along with the first normal n1, approximate distances dn1 and dv, and the
true distance d1. The next (reflected) ray is shown b) along with the new
normal n2 and distance dn2 . Notice the dv value is the same as in a) as there
is no analog for the distance from the viewer for the second ray.

search converges on an intersection between the ray and a depth
map value in no more than log2 dim steps, wheredim is the maxi-
mum of the two texture dimensions. To use the binary search, we
need a startpoint and an endpoint. The starting point is the ray ori-
gin and the endpoint should be a point further along the ray than
an intersection point. To find an endpoint, we choose to clip the
ray against the viewing frustum and use the clipping point as the
endpoint (see Figure 3a). If the correct intersection point is outside
the viewing frustum, our endpoint is not far enough along the ray.
Without depth information for the unseen geometry, though, our
method fails to find an intersection in any case. Next is the binary
search loop that will take at most log2 dim iterations. To avoid the
ray tracing “acne” problem, we offset the startpoint slightly in the
direction of the ray. Find the midpointm between the current two
points, which at the beginning is the startpoint and the endpoint
(see Figure 3b). Projectm into texture space to yieldmpro j with
components (mpro j

x ,mpro j
y ,mpro j

z ). Use (mpro j
x ,mpro j

y ) to index into
the back facing depth texture to determinedlookup, the value in the
depth map.

There are five possibilities at this point and there is one choice to
make: is it the startpoint or the endpoint that moves to the midpoint.
To discuss the possibilities, consider a rayr that has a direction
vector(rx,ry,rz) and assume depth increases with−Z.

• Whenrz < 0 then move the endpoint to the midpoint (when
mpro j

z < dlookup) or move the startpoint to the midpoint (when

mpro j
z > dlookup)



• Whenrz > 0 then move the endpoint to the midpoint (when
mpro j

z > dlookup) or move the startpoint to the midpoint (when

mpro j
z < dlookup)

• dlookup=1 (the farplane) then move the endpoint to the mid-
point

This algorithm is not guaranteed to converge on the correct inter-
section. To ensure that the correct intersection is found, one could
use a linear search before the binary search as in [15] or the more
robust and efficient technique described in [1]. This work entails a
preprocess to determine step sizes along a ray that ensure intersec-
tions are not missed, not falsely identified, and quickly determined.
Our algorithm yields plausible results and so we prefer to not use
the linear search and to skip the preprocessing. After we have com-
pleted a sufficient number of iterations, we take the last projected
midpoint value from the depth map as our intersection point candi-
date.

After we have run the binary search on the back facing depth map,
we run the search again on the front facing depth map. At this
point we have two candidates for the intersection point. To deter-
mine which is more valid, we compute which point is more closely
aligned with the ray using dot products (see Figure 6). If both in-
tersection points are far enough from the transmitted direction, we
consider this ray to have missed the object and we are done bounc-
ing. With an intersection pointi, we projecti into the appropriate
(front or back facing) normal map to retrieve the normal at this sur-
face point. Now we determine if TIR has occurred and compute the
next refracted or reflected direction accordingly. With this new di-
rection and point, we can repeat this algorithm to simulate another
light bounce. After we have bounced a sufficient number of times,
we intersect this ray with the nearby geometry and or an environ-
ment map and quit. To intersect nearby geometry we can use the
same binary search from above on the nearby geometry depth tex-
ture. However, since the ray that is intersecting the nearby geometry
has a different view than the one used to create the nearby geometry
textures, there could be parallax, disocclusion, and aliasing artifacts
[21].

θ f ront

θback

Figure 6: This figure shows how we choose the intersection point between
the front and back candidates. The ray starting at the black point intersects
the front and back depth maps according to our technique and results in the
back intersection candidate (green) and front intersection candidate (blue).
We choose the point that is more closely aligned with the ray (the smaller of
θback and θ f ront by means of two dot products.

4 RESULTS AND DISCUSSION

We have implemented our approach using Cg shaders on a single
processor Pentium 4 machine with an nVidia 8800 GTX. The ray
traced image in Figure 1 has a ray depth of 10 and 8 samples per
pixel while the rasterization-based images are 4x supersampled im-
ages at 512x512. The background in Figure 1 is a quad that is
intersected analytically with outgoing rays from the refractive ob-
ject. Other options are available for non-analytic and complex back-

ground geometry such as using a depth map [21] [17] or distance
impostors [18] and an iterative root finding approach.

The intermediate rendering passes described in Figure 2 were cre-
ated in offscreen framebuffer objects in 16-bit floating point tex-
tures. We experimented with using lower resolution intermediate
textures and the results are in Figure 7. With only one bounce, it
may be possible to get away with very low resolution1

16 or even
1
64 the size of the final rendering. With adding one more bounce,
intermediate buffers less than 2562 produce too much noise in the
final image.

To see the effect of adding more bounces as compared to ray tracing
see Figure 8. Note in the ray traced image that reflected rays are
not traced besides totally internally reflected rays so as to make
an easier comparison with the other approaches. Figure 9 shows a
refractive Buddha model with 250K vertices in front of the complex
Venus model and inside the Uffizi environment map. Rays exiting
the Buddha are intersected with the Venus using the binary search
described in this paper with the nearby geometry depth map. Figure
10 is another example scene where complex geometry can be seen
through a refractor.

Figure 9: A Buddha refracting light in front of Venus.

After a ray transmits through the front facing geometry, it typically
intersects the back facing geometry. This is especially true for ob-
jects with low indices of refraction as the eye rays are not bending
very much. If front facing geometry can effectively be ignored,
one less binary search per bounce per pixel can be avoided. Some
scenes will still require using both front and back facing surfaces
such as the one in Figure 11.

Another place for speed up is in the number of binary search itera-
tions. The more bounces a ray takes, the less impact each bounce
has on the final image. In this spirit, we have chosen to make fewer
iterations on bounces beyond the first. We found that using 8 iter-
ations on the first transmitted ray and 5 iterations on the following
bounces gives visual results similar to using more iterations.

Table 1 shows our frame rates for the sample scenes shown in this
paper. Our approach is very much fragment bound and so the num-
ber of refractive fragments is most highly related to frame rate. For
example, when the refractive dragon is viewed head on compared



64x64 128x128 256x256 512x512
Figure 7: This figure shows the effects of adding additional bounces using varied resolution intermediate buffers. With only one bounce, very low resolution
buffers can be used with little artifact. The first row shows results for zero bounces, the second with one bounce, and the third with two bounces.

(a) (b) (c) (d)

Figure 8: The results of adding more light bounces with 1 bounce in (a), 2 in (b), and 3 in (c). (d) is the ray traced reference image.

to the side view (Figure 1a) there is a speed up by at least a fac-
tor of two because there are many fewer refractive pixels. We have
deliberately chosen scenes that show the refractive object covering
many pixels in the final image showing off the visual quality of the
scene at the cost of slower, yet still interactive, image generation.

5 CONCLUSION AND FUTURE WORK

We have presented an algorithm for modeling refractions with total
internal reflection that requires no precomputation and runs inter-
actively on commodity graphics hardware. We achieve this through
a binary search for the distance a ray travels inside an object until
an intersection. With this approximation technique for the distance,
we recursively trace rays until we have exited the object or we have
reached a defined recursion depth.

A limitation of this approach occurs when the object is only par-
tially within the viewing frustum. The part that exists outside the
frustum will not render to the depth textures that represent the ob-

ject and therefore no intersections are made with that part of the
object. A workaround is to render a slightly larger view frustum
to try and capture more of the refractor as is presented in [4]. An-
other similar problem occurs when the nearby geometry partially or
wholly lies outside the view frustum. Fragments outside the frus-
tum never make it to the depth maps and thus can never be consid-
ered for intersection.

Our approach could be improved by adding more depth information
about the object. It is possible with a concave object to have more
than two interfaces project to the same texel. Such surfaces are dis-
regarded in our technique. We could consider somehow generating
a multichannel depth map, as in [14], so that we could intersect
more surfaces and do so in parallel.

REFERENCES

[1] Lionel Baboud and Xavier D́ecoret. Rendering geometry with relief
textures. InGraphics Interface ’06, 2006.



5122 10242

bounces 1 2 3 4 1 2 3 4
kitchen 138 110 92 79 75 60 51 44
Buddha and Venus 43 34 29 25 26 21 17 15
dragon (250K) and Macbeth 38 31 26 22 23 18 15 13
Table 1: Frame rates in frames per second for test scenes shown in the paper with variable framebuffer resolutions and number of bounces. All timings are made
using only the back facing geometry for multiple bounces and 8 binary search iterations on the first ray followed by 5 iterations on further rays.

Figure 10: A refractive Stanford Bunny in a kitchen with the Utah Teapot.

[2] Bin Chan and Wenping Wang. Geocube - gpu accelerated real-time
rendering of transparency and translucency.The Visual Computer,
21(8-10):579–590, 2005.

[3] Paul J. Diefenbach and Norman I. Badler. Multi-pass pipeline render-
ing: realism for dynamic environments. InSI3D ’97: Proceedings of
the 1997 symposium on Interactive 3D graphics, pages 59–ff., New
York, NY, USA, 1997. ACM Press.

[4] Pau Estalella, Ignacio Martin, George Drettakis, and Dani Tost. A
gpu-driven algorithm for accurate interactive reflectionson curved
objects. In Tomas Akenine M̈oller and Wolfgang Heidrich, editors,
Rendering Techniques’06 (Proc. of the Eurographics Symposium on
Rendering). Eurographics/ACM SIGGRAPH, June 2006.

[5] Olivier Génevaux, Fŕed́eric Larue, and Jean-Michel Dischler. Inter-
active refraction on complex static geometry using sphericalharmon-
ics. In SI3D ’06: Proceedings of the 2006 symposium on Interactive
3D graphics and games, pages 145–152, New York, NY, USA, 2006.
ACM Press.

[6] Stephane Guy and Cyril Soler. Graphics gems revisited: fast
and physically-based rendering of gemstones.ACM Trans. Graph.,
23(3):231–238, 2004.

[7] Ziyad S. Hakura and John M. Snyder. Realistic reflectionsand refrac-
tions on graphics hardware with hybrid rendering and layered envi-
ronment maps. InProceedings of the 12th Eurographics Workshop on
Rendering Techniques, pages 289–300, London, UK, 2001. Springer-
Verlag.

[8] Wei Hu and Kaihuai Qin. Interactive approximate rendering of reflec-
tions, refractions, and caustics.IEEE Transactions on Visualization
and Computer Graphics, 13(1):46–57, 2007.

[9] Douglas Scott Kay and Donald Greenberg. Transparency for com-
puter synthesized images. InSIGGRAPH ’79: Proceedings of the 6th
annual conference on Computer graphics and interactive techniques,
pages 158–164, New York, NY, USA, 1979. ACM Press.

(a) (b)

Figure 11: In some scenes it is vital to use both the front and the back facing
surfaces as shown in this example where in (a) only the back facing surfaces
are used and in (b) both front and back are used.

[10] Jens Kr̈uger, Kai B̈urger, and R̈udiger Westermann. Interactive screen-
space accurate photon tracing on GPUs. InRendering Techniques (Eu-
rographics Symposium on Rendering - EGSR), pages 319–329, June
2006.

[11] Erik Lindholm, Mark J. Kligard, and Henry Moreton. A user-
programmable vertex engine. InSIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive tech-
niques, pages 149–158, New York, NY, USA, 2001. ACM Press.

[12] Eisaku Ohbuchi. A real-time refraction renderer for volume objects
using a polygon-rendering scheme. InComputer Graphics Interna-
tional, pages 190–195, 2003.

[13] Gustovo Oliveira. Refractive texture map-
ping, part two. Gamasutra, November 2000.
http://www.gamasutra/features/20001117/oliveira01.htm.

[14] Fábio Policarpo and Manuel M. Oliveira. Relief mapping of non-
height-field surface details. InSI3D ’06: Proceedings of the 2006
symposium on Interactive 3D graphics and games, pages 55–62, New
York, NY, USA, 2006. ACM Press.

[15] Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba. Real-
time relief mapping on arbitrary polygonal surfaces. InSI3D ’05:
Proceedings of the 2005 symposium on Interactive 3D graphics and
games, pages 155–162, New York, NY, USA, 2005. ACM Press.

[16] C. M. Schmidt. Simulating refraction using geometric transforms.
Master’s thesis, Computer Science Department, University ofUtah,
2003.

[17] Musawir A. Shah and Sumanta Pattanaik. Caustics mapping:An
image-space technique for real-time caustics. Technical Report CS
TR 50-07.

[18] Laszlo Szirmay-Kalos, Barnabas Aszodi, Istvan Lazanyi, and Matyas
Premecz. Approximate Ray-Tracing on the GPU with Distance Im-
postors.Computer Graphics Forum, 24(3):695–704, 2005.

[19] Turner Whitted. An improved illumination model for shaded display.
Commun. ACM, 23(6):343–349, 1980.

[20] Chris Wyman. An approximate image-space approach for interactive
refraction.ACM Trans. Graph., 24(3):1050–1053, 2005.

[21] Chris Wyman. Interactive image-space refraction of nearby geometry.
In GRAPHITE ’05: Proceedings of the 3rd international conference
on Computer graphics and interactive techniques in Australasia and
South East Asia, pages 205–211, New York, NY, USA, 2005. ACM
Press.


