
14	 September/October 2011	 Published by the IEEE Computer Society� 0272-1716/11/$26.00 © 2011 IEEE

Feature Article

Nonpinhole Approximations for
Interactive Rendering
Paul Rosen ■ University of Utah

Voicu Popescu ■ Purdue University

Kyle Hayward ■ Human Head Studios

Chris Wyman ■ University of Iowa

In the quest for higher-quality and higher-
performance rendering, researchers have re-
sorted to approximating scene geometry with

more efficient representations.
Such representations should
have three main properties. First,
they should sufficiently capture
the geometry they replace such
that the resulting images are
virtually indistinguishable from
the images obtained when ren-
dering with the original geome-
try. Second, to support dynamic
scenes, the representations must
be created on the fly, which re-
quires fast construction. Finally,
the alternative representation
must deliver the desired perfor-
mance boost to the application.

We distinguish between two
types of applications:

■■ applications in which the representation can be
rendered directly with the conventional feed-
forward approach of projection followed by
rasterization, such as when a distant tree is ren-
dered using a billboard (for more on billboards,
see the “Image-Based Geometry Approximation”
sidebar), and

■■ applications in which the representation must
be rendered by intersection with one ray at a
time, such as for dealing with reflections, re-

fractions, relief texture mapping, and ambient
occlusion.

This article focuses on the second type of appli-
cation. For such applications, fast computation of
the intersection between a ray and the alternative
geometry representation is a central concern.

Images enhanced with per-pixel depth have two
of the desired properties. Efficient construction of
a depth image employs graphics hardware to render
the geometry that the image replaces. The projec-
tion of a ray onto the depth image is a segment.
This reduces the dimensionality of the search space
for the intersection of the ray and depth image
from two to one, enabling fast intersection. Mod-
ern graphics hardware allows stepping along the
ray projection, per pixel, at interactive rates. How-
ever, depth images are acquired either from a single
viewpoint (with a planar pinhole camera) or along
a single view direction (with an orthographic cam-
era), which limits their geometry-modeling power.
Such depth images miss surfaces that become vis-
ible when the application renders the geometry ap-
proximation; this lowers the results’ quality.

We propose constructing depth images using
nonpinhole cameras. Such depth images offer a
high-fidelity approximation of scene geometry while
keeping construction and rendering costs low. Be-
cause a nonpinhole camera’s rays don’t have to pass
through one point, we can design them to sample
all surfaces exposed by the application. To ensure
construction and rendering efficiency, we design

Orthographic or perspective
images are often used to
approximate geometry for
rendering high-order effects.
These approximations capture
only what’s visible from
one direction or viewpoint.
Nonpinhole cameras can
improve approximation quality
at little additional cost. These
proposed pinhole cameras
demonstrate these advantages
by way of reflections, refractions,
relief texture mapping, and
ambient occlusion.

	 IEEE Computer Graphics and Applications� 15

the nonpinhole camera to provide fast projection.
This enables constructing the nonpinhole depth
image in feed-forward fashion by projection fol-
lowed by rasterization. We leverage the closed-form,
unambiguous projection of the nonpinhole camera
a second time, during rendering, to compute the
ray’s projection onto the nonpinhole image.

Why Use Nonpinhole Cameras?
Nonpinhole depth images provide advantages re-
garding reflection, refraction, relief texture map-
ping, and ambient occlusion (also see the accom-
panying video at http://doi.ieeecomputersociety.
org/10.1109/MCG.2011.32).

Reflection and Refraction
In Figure 1, the nonpinhole depth image captures
all the teapot surfaces exposed in the reflections,
whereas a conventional depth image produces

incomplete reflections. We find the intersection
between a reflected ray and the depth image by
searching along the curved projection of the ray
(see Figure 2). This differs from planar pinhole
cameras, where the ray projection is a straight line.

We similarly support refractions by intersecting
the depth image with refracted rays (see Figure 3).

Relief Texture Mapping
Nonpinhole cameras greatly enhance the model-
ing power of relief texture mapping. A single-layer
nonpinhole relief texture captures the entire top and
sides of a barrel or an entire car to produce quality
frames with rich detail (see Figure 4a). In contrast,
a single-layer conventional relief texture misses a
considerable part of the barrel (see Figure 4b). A
multilayered relief texture is impractical in this
case because a proper sampling of the barrel’s side
would require a prohibitively large number of layers.

Paolo Maciel and Peter Shirley coined the term impostor,
which now widely denotes an image-based simpli-

fied representation of geometry to make rendering more
efficient.1 The simplest impostor is a billboard, a quad
texture mapped with the image of the original geometry,
with transparent background pixels. Billboard construc-
tion is efficient, intersecting a billboard with a ray is trivial,
and billboards provide good approximations of geometry
seen orthogonally from a distance. However, when the
billboard is near the viewer, the drastic approximation of
geometry is unacceptable.

Billboard clouds use several quads to improve model-
ing quality.2 The quads and the assignment to the original
geometry are optimized for modeling fidelity. The number
of quads is small, and a billboard cloud can be intersected
with a ray one quad at a time. However, the optimization
makes constructing a billboard cloud a lengthy process that
precludes dynamic scenes. Moreover, the approximation
quality is still insufficient for close-up viewing.

Depth images greatly improve billboards’ modeling
power.3 Constructing a depth image is just as inexpensive
as constructing a billboard, but the cost of intersection with
a ray is no longer constant but linear in the depth image
width. To avoid searching for the intersection in the entire
image, depth image construction leverages epipolar-like
constraints: the intersection is known to belong to the im-
age plane projection of the ray. Because the depth image is
constructed with an orthographic or a perspective projec-
tion, it captures only samples visible along the reference
direction or from the reference viewpoint. When the ap-
plication exposes surfaces the depth image didn’t capture,
objectionable disocclusion artifacts occur.

The simplest method for alleviating disocclusion errors

is to use additional depth images,4 which is expensive and
only palliative. A breakthrough came with the introduc-
tion of layered representations such as the multilayered
z-buffer5 and the layered depth image,6 which allow for
more than one sample along a ray and control disocclu-
sion errors effectively. However, expensive construction
restricts layered representations to static scenes. Moreover,
the lack of a connected representation makes ray intersec-
tion difficult, precluding rendering effects such as those
we address in the main article.

As graphics hardware evolved, intersecting depth
images with individual rays became possible, and research
shifted to rendering effects involving higher-order rays.

References
	 1.	 P. Maciel and P. Shirley, “Visual Navigation of Large Environ

ments Using Textured Clusters,” Proc. 1995 Symp. Interactive

3D Graphics (I3D 95), ACM Press, 1995, pp. 95–102.

	 2.	 X. Decoret et al., “Billboard Clouds for Extreme Model

Simplification, ACM Trans. Graphics, vol. 22, no. 3, 2003, pp.

689–696.

	 3.	 L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-

Based Rendering System,” Proc. Siggraph, ACM Press, 1995,

pp. 39–46.

	 4.	 W. Mark, L. McMillan, and G. Bishop, “Post-rendering 3D

Warping,” Proc. 1997 Symp. Interactive 3D Graphics (I3D 97),

ACM Press, 1997, pp. 7–16.

	 5.	 N. Max and K. Ohsaki, “Rendering Trees from Precomputed

Z-buffer Views,” In Rendering Techniques ’95: Proc. Eurographics

Rendering Workshop, Eurographics Assoc., 1995, pp. 45–54.

	 6.	 J. Shade et al., “Layered Depth Images,” Proc. Siggraph,

ACM Press, 1998, pp. 231–242.

Image-Based Geometry Approximation

16	 September/October 2011

Feature Article

(a) (b)

Figure 1. Reflections calculated using nonpinhole versus conventional images. (a) A nonpinhole depth image of a teapot and the
reflections rendered with it. (b) A conventional depth image and reflection rendered with it. The nonpinhole depth image captures
the teapot’s lid and bottom and produces quality reflections; the conventional depth image produces incomplete reflections.

(a) (b)

Figure 2. Visualization of (a) rays in 3D and (b) their curved projection on the nonpinhole depth image in Figure
1. The curved rays of the nonpinhole allow access to regions not visible from a perspective or orthographic view.

(a) (b)

Figure 3. Refractions calculated using a nonpinhole depth image of a teapot similar to the one in Figure 1.
Whereas accurate reflections might require many conventional views to calculate, nonpinholes can be used to
circumvent this limitation.

(a) (b)

Figure 4. Nonpinhole versus conventional relief texture mapping. (a) Nonpinhole relief texture maps and the frames rendered
with them. (b) Conventional relief texture mapping. The nonpinhole relief texture captures the top and sides of the barrel and
car; the conventional relief texture misses a considerable part of the barrel.

	 IEEE Computer Graphics and Applications� 17

Ambient Occlusion
A promising technique for rendering with ambient
occlusion at interactive rates is to use the output
image z-buffer to approximate the exposure of
output image samples to the environment.1 How-
ever, the amount of occlusion for visible samples
also depends on samples not visible in the output
image. This makes the ambient occlusion unstable,
with dark regions appearing and disappearing as ge-
ometry subsets appear and disappear in the output
image. We propose using a nonpinhole z-buffer that
captures most samples needed to estimate the oc-
clusion of output image samples, producing more
complete and more stable ambient occlusion (see
Figure 5).

Nonpinhole-Camera Depth Images
Abandoning the pinhole constraint lets us design
the camera model to obtain the depth image best
suited for the application and dataset at hand. Be-
fore we go into detail into our method, let’s look at
construction and ray intersection for nonpinhole
depth images in general.

Construction
Assume we have a nonpinhole camera with fast
projection that maps a 3D point (x, y, z) to (u, v, z),
where (u, v) indicates the image coordinates and z
is a measure of depth linear in the image space. We
can efficiently construct a nonpinhole depth image
by projecting the vertices of the geometry that it
will approximate and rasterizing the projected tri-
angles conventionally. The unconventional projec-
tion occurs in a vertex program that implements
the nonpinhole-camera model. Because lines don’t
necessarily project to lines anymore and because
rasterization parameters don’t vary linearly (before
the perspective divide) anymore, the triangles must
be sufficiently small to provide an adequate approx-
imation. Complex objects are frequently modeled
with small triangles, so additional tessellation usu-

ally is unnecessary. We can subdivide meshes with
large triangles on the fly by exploiting primitive-
level GPU programmability.

Ray Intersection
Like a regular depth image, a nonpinhole depth im-
age is defined by an image with color and depth per
pixel and by a camera model that allows projection.
We compute the intersection of a ray (a, b) with a
nonpinhole depth image NPI in two main steps.

First, we clip segment (a, b) with the bounding vol-
ume of NPI to obtain segment (c, d) (see Figure 6).

Second, we interpolate (c, d) in 3D from near to
far to create n subsegments. For each subsegment
(sk, sk+1), we project sk and sk+1 to the depth image
at pixels pk = (uk, vk, zk) and pk+1 = (uk+1, vk+1, zk+1).
Next, we perform a lookup of image depths izk, izk+1
at (uk, vk), (uk+1, vk+1). We then intersect [(0, zk), (1,
zk+1)] and [(0, izk), (1, izk+1)] in 2D segments to
obtain intersection (tj, zj), where t is the parameter

(a) (b) (c)

Q

S

Figure 5. Screen-space ambient occlusion calculated using nonpinhole versus conventional images. (a) A nonpinhole z-buffer
illustrated with color (Q and S indicate two samples). (b) The ambient occlusion rendered using it. (c) The ambient occlusion
rendered using the output image z-buffer. The nonpinhole z-buffer captures hidden parts of the dragon for a more complete and
more stable ground shadow.

izk+1

sk sk+1

pk+1pk

(tj, zj)

zkizkzk+1

Handle

(Near)

Depth
image

z

1

0

c
(Far)
d

3D

Body

Ray

Spout

t =
 0

t =
 1

Figure 6. The intersection of a ray and a nonpinhole depth image, for
a depiction of a teapot. iz indicates the image depth, (c, d) indicates a
segment, (sk, sk+1) indicates a subsegment, p indicates a pixel, t is the
parameter locating the intersection along a segment, and u and v are
the image coordinates.

18	 September/October 2011

Feature Article

locating the intersection along segment (pk, pk+1).
If (tj, zj) is valid, we return the depth image color
icj at lerp((uk, vk), (uk+1, vk+1), tj). Otherwise, we
continue with the next subsegment.

We interpolate the ray in 3D because its projec-
tion isn’t a straight line and we can’t simply ras-
terize the segment connecting the endpoint projec-
tions. We project each intermediate point with the
nonpinhole camera to trace the curved projection
correctly. Because the depth z stored by the depth
image varies linearly in the image, we can efficiently
compute the intersection in a 2D space (t, z).

Specializing the Depth Images
Here, we show how we construct depth images by
adapting two recent nonpinhole camera models:
the single-pole occlusion camera (SPOC)2 and graph
camera.3

The SPOC
The SPOC reaches around an object’s silhouette
to gather samples not visible from the reference
viewpoint but near the silhouette. Such “barely”
occluded samples are needed when the depth image
is sampled from nearby viewpoints. The SPOC is
well suited for approximating single objects; we
used it for Figures 1 to 4.

The SPOC projection uses a conventional projec-
tion followed by a distortion that moves the pro-
jected sample away from a pole.2 The pole is the
projection of the object’s center. The distortion’s
magnitude increases with depth, so deeper samples
move more, escaping the occluding front surface.
For the SPOC depth images in Figures 1 and 4,
the distortion pushes the object silhouettes back,
revealing the teapot’s lid and bottom, the barrel’s
entire side, and the car’s side and wheels. Figure 7
shows that the SPOC depth image captures about
half of the teapot, which is sufficient to intercept

all reflected rays that would intersect the original
teapot geometry.

SPOC construction and intersection closely fol-
low the algorithms we described in the previous sec-
tion. We choose the number of subsegments n as
the Euclidian distance between the projection of the
endpoints of the clipped ray. This provides a good ap-
proximation of the actual number of pixels covered
by the curved projection of the ray. Figure 2 visual-
izes the curved projections of a set of coplanar rays.

The Graph Camera
To construct a graph camera, we take a planar pin-
hole camera and perform a series of frustum bend-
ing, splitting, and merging operations. The result is a
graph of planar pinhole cameras. The graph camera
circumvents occluders to sample an entire 3D scene
in a single-layer image. In Figure 8, the graph camera
depth image models the entire reflected scene.

For the graph camera, we generalize the concept
of a camera ray to the set of points projecting at the
same given image location, which allows for rays
that aren’t straight lines but are piecewise linear. A
ray changes direction as it crosses the shared face
separating two frustums, but it remains continuous,
which makes the graph camera image continuous.
Figure 9 shows the graph camera we constructed
for the maze in Figure 8. The construction used a
breadth-first traversal starting at the entrance.

Projecting a point with the graph camera takes
two steps. First, we find the frustum containing the
given 3D point. Then, we project the point directly
to the output image with a 4D matrix that concate-
nates the projections of all the cameras on the path
from the current frustum to the root. To find the
frustum containing the point, we can use an octree
or another hierarchical space subdivision.3 Using
the projection, construction of the graph camera
depth image proceeds as in the section “Construc-

(a) (b)

Figure 7. Visualizations of samples stored by (a) a conventional depth image and (b) a single-pole occlusion
camera (SPOC) depth image. The SPOC depth image captures about half of the teapot, which is sufficient to
intersect most of the reflected rays that will be needed to produce complete reflections.

	 IEEE Computer Graphics and Applications� 19

tion,” except that a triangle must be processed with
each frustum it intersects.

To intersect a graph camera depth image with a
ray, we can follow the generic algorithm: interpolate
the ray uniformly in 3D space, and project each
new point onto the graph camera image. However,
because each frustum is a pinhole, a ray’s projection
is piecewise linear (see Figure 10), which enables
the following optimization. Given a ray r, for each
graph camera frustum Fi, we follow these steps:

1.	 Intersect ray r with Fi to produce 3D subsegment
(si, ei).

2.	 Project segment (si, ei) to graph camera image
segment (pi, qi).

3.	 Walk on (pi, qi) to find the intersection.

The algorithm computes the ray’s linear pieces
directly by intersecting the ray with all the frustums,
producing a set of subsegments (si, ei). This is
more efficient than the generic algorithm, which
requires small 3D steps just to model the breaking
points of the piecewise-linear projection with high
fidelity. Each frustum is a planar pinhole camera,
so each subsegment projection remains a straight
line segment (pi, qi) in the output graph camera
image. The optimized algorithm interpolates the
subsegment to search for the intersection step by
step, similarly to the generic algorithm.

Applications to Interactive Rendering
Nonpinhole depth images accelerate reflection, re-
fraction, relief texture mapping, and ambient oc-
clusion as follows.

Reflection
To render a frame of a scene with specular reflec-
tions, we first update the depth images that ap-
proximate the reflected geometry that’s dynamic.
Then, we render each reflector by computing a re-
flected ray per pixel, a step similar to environment
mapping, and by intersecting the reflected ray with
the reflected geometry’s depth images. (For more
on environment mapping, see the “Using Depth
Images to Accelerate Rendering” sidebar.)

As with environment-mapped reflections, the
process produces multiple reflections of the same
object at no extra cost. Consider Figure 11a, in
which the concave bunny reflects the teapot multi-
ple times. We compute the reflection one ray at the
time; the fact that two or more rays reflect the same
3D point has no bearing on the method’s cost.

Our method supports fully dynamic scenes be-
cause it doesn’t require precomputation involving
the reflector and it efficiently computes the non-

pinhole depth images. It supports higher-order
reflections by storing per-pixel normals. We use
the normal at a first intersection point to create
a second-order reflected ray that intersects depth
images again (see Figure 11b).

When deciding how to approximate reflected
geometry, we want to devise the simplest approxi-
mation that captures all samples visible in reflec-
tions. For example, a billboard perfectly captures
the black-and-white ground plane in the reflec-
tions in Figure 11. The billboard captures the SPOC

(a)

(b) (c)

Figure 8. Using a graph camera for reflections. (a) A graph camera depth
image capturing an entire 3D maze. (b) An overhead view of the maze.
(c) The reflection rendered using the depth image.

Figure 9. A graph camera model for the maze in Figure 8. The frustums
are red; a few rays are shown in white. The construction used a breadth-
first traversal starting at the entrance.

20	 September/October 2011

Feature Article

depth image of the teapot along the direction that
connects the centers of the bunny and teapot. We
set the SPOC’s field of view to the smallest value
that encompasses the teapot. The SPOC allows
for some flexibility in tuning the disocclusion.
For the teapot, more disocclusion means a better

sampling of the lid and bottom and pushing back
the body’s silhouette. However, a single SPOC
can’t disocclude the entire teapot because the
handle and spout will start occluding the body. If
the teapot were spinning or if multiple reflectors
surrounded the teapot, the best solution would be
to use two depth images capturing complemen-
tary halves of the teapot. SPOCs are suitable for
capturing individual objects, and graph cameras
are suitable capturing an entire environment.

We want to select the minimum depth image
resolution that captures the reflected geometry well.
This way, we obtain the best reflection regardless of the
rate at which the depth image is sampled by reflected
rays in any given frame. Consider a divergent pattern
of rays, as obtained off a convex reflective surface or
a concave reflective surface beyond the convergence
point. Such a pattern will minify the reflected
object, which is handled straightforwardly through
mip-mapping. Like conventional depth images,
nonpinhole depth images have the great advantage

Here, we look at previous research applying depth im-
ages to reflection, refraction, relief texture mapping,

and ambient occlusion.

Reflection and Refraction
Although interactive-rendering research has extensively
studied reflection and refraction, no complete solution
exists. We assign reflection and refraction rendering
techniques to four groups: ray tracing,1 image-based ren-
dering,2 projection,3 and reflected- or refracted-scene ap-
proximation. Here, we discuss only the last group, which is
the most relevant to our research.

Environment mapping approximates reflected scenes with
a cube map.4 It’s the preferred approach for interactive appli-
cations owing to its efficiency, robustness, and good results
when the scene geometry is far from the reflector or refrac-
tor. However, it performs poorly when the scene geometry
is near the reflector or refractor. Approximating the scene
with a sphere improves the results,5 but few environments
are spherical, so the fidelity is still quite limited. Using depth
images can improve scene approximation.6,7 Environment
mapping produces quality reflections for simple objects or
select viewpoints, but its insufficient coverage is a limitation
for nontrivial scenes or wide viewpoint translations.

Compared to reflection, refraction rays require addi-
tional work because most rays interact with the refractor
at least twice—once when entering the object and once
when leaving it. Researchers have developed several tech-
niques for computing the second refraction at interactive
rates, including precomputed distance fields,8 GPU ray
tracing,9 and image-space approximations.10

Relief Texture Mapping
Another rendering effect that requires intersecting depth
images with individual rays is relief texture mapping.11 This
approach adds true geometric detail to a coarse model by
texturing each triangle with a height map. A conventional
relief texture samples surface detail orthographically,
along the direction of the normal of the underlying coarse
model, which limits the technique to height-field surfaces.
Even so, sampling degrades when the geometric detail be-
comes aligned with the normal of the underlying surface.

Researchers have extended relief texture mapping
to non-height-field surface detail by resorting to a relief
texture with multiple layers, each sampled orthographi-
cally.12 The extension works well when complex detail can
be captured in a few layers, as with a chain link fence, for
example. This extension can capture double-sided detail.
However, capturing geometric detail perpendicular to the
underlying surface remains challenging because it requires
many layers. Our research extends relief texture mapping
in an orthogonal direction; multilayered nonpinhole relief
textures could be developed to exploit both techniques’
advantages.

Ambient Occlusion
Ambient-occlusion techniques add realism to local illu-
mination models by approximating the amount of light a
surface point receives on the basis of how much of the en-
vironment is hidden from the point by nearby geometry.
The computational cost is high because a ray must be cast
from each point in all directions. The first implementations
precomputed ambient occlusion in model space offline,13

Using Depth Images to Accelerate Rendering

(a) (b)

Figure 10. Visualization of (a) a 3D ray and (b) its piecewise linear
projection in a graph camera image. This projection lets us optimize the
ray intersection algorithm.

	 IEEE Computer Graphics and Applications� 21

of reducing the problem of geometry minification
to the much simpler problem of image minification.
A convergent pattern of rays, on the other hand,
magnifies the reflected object, and the reflection

will become undersampled once the sampling rate
exceeds the depth image’s resolution. Because this is
also the original geometry’s resolution, the problem
can’t be imputed to the depth image.

which precluded dynamic scenes. Initial attempts to use
GPUs to accelerate ambient occlusion employed many
(128 to 1,024) spherical shadow maps of the scene.14

Our nonpinhole z-buffer ambient-occlusion method
builds on an image-space technique that Louis Bavoil and
his colleagues introduced.15 Their technique approximates
the amount of ambient occlusion at an output pixel using
the output image z-buffer. They noticed that to sample
occlusion at a pixel for an entire half plane, traversing one
z-buffer segment is sufficient. The result is fast ambient
occlusion that supports dynamic scenes. However, the
technique computes ambient occlusion as if the geometry
seen by the output image were the only geometry in the
scene, which can cause missing and unstable ambient-
occlusion artifacts.

References
	 1.	 T. Whitted, “An Improved Illumination Model for Shaded

Display,” Comm. ACM, vol. 23, no. 6, 1980, pp. 343–349.

	 2.	 P. Debevec, Y. Yu, and G. Borshukov, “Efficient View-

Dependent Image-Based Rendering with Projective Texture-

Mapping,” Proc. 1998 Eurographics Workshop Rendering,

Eurographics Assoc., 1998, pp. 105–116.

	 3.	 E. Ofek and A. Rappoport, “Interactive Reflections on Curved

Objects,” Proc. Siggraph, ACM Press, 1998, pp. 333–342.

	 4.	 J.F. Blinn and M.E. Newell, “Texture and Reflection in Computer

Generated Images,” Comm. ACM, vol. 19, no. 10, 1976, pp.

542–547.

	 5.	 K. Bjorke, “Image-Based Lighting,” GPU Gems, R. Fernando,

ed., Addison-Wesley, 2004, pp. 307–322.

	 6.	 L. Szirmay-Kalos et al., “Approximate Ray-Tracing on the

GPU with Distance Impostors,” Computer Graphics Forum,

vol. 24, no. 3, 2005, pp. 171–176.

	 7.	 V. Popescu et al., “Reflected-Scene Impostors for Realistic

Reflections at Interactive Rates,” Computer Graphics Forum,

vol. 25, no. 3, 2006, pp. 313–322.

	 8.	 B. Chan and W. Wang, “Geocube—GPU Accelerated Real-

Time Rendering of Transparency and Translucency,” The

Visual Computer, vol. 21, nos. 8–10, 2005, pp. 579–590.

	 9.	 D. Roger, U. Assarsson, and N. Holzschuch, “Whitted Ray-

Tracing for Dynamic Scenes Using a Ray-Space Hierarchy

on the GPU,” Proc. 2007 Eurographics Symp. Rendering,

Eurographics Assoc., 2007, pp. 99–110.

	10.	 C. Wyman, “An Approximate Image-Space Approach for

Interactive Refraction,” ACM Trans. Graphics, vol. 24, no 3,

pp. 1050–1053.

	11.	 F. Policarpo, M. Oliveira, and J. Comba, “Real-Time Relief

Mapping on Arbitrary Polygonal Surfaces,” Proc. 2005 Symp.

Interactive 3D Graphics and Games (I3D 05), ACM Press,

2005, pp. 155–162.

	12.	 F. Policarpo and M. Oliveira, “Relief Mapping of Non-

Height-Field Surface Details,” Proc. 2006 Symp. Interactive 3D

Graphics and Games (I3D 06), ACM Press, 2006, pp. 55–62.

	13.	 S. Zhukov, A. Iones, and G. Kronin, “An Ambient Light

Illumination Model,” Proc. 1998 Eurographics Rendering

Workshop, Eurographics Assoc., 1998, pp. 45–56.

	14.	 M. Pharr and S. Green, “Ambient Occlusion,” GPU Gems, R.

Fernando, ed., Addison-Wesley, 2004, pp. 279–292.

	15.	 L. Bavoil, M. Sainz, and R. Dimitrov, “Image-Space Horizon-

Based Ambient Occlusion,” Siggraph 2008 Talks, ACM Press,

2008, article 22.

(a) (b)

Figure 11. Reflections: (a) Multiple. (b) Second-order. Using a nonpinhole depth image, multiple reflections
can be calculated at no additional cost. Second- and higher-order reflections can also be calculated at the cost
of an additional ray–depth-image intersection for each ray.

22	 September/October 2011

Feature Article

Refraction
As we mentioned before, we render refractions by
intersecting the emerging ray with the depth images
that approximate the geometry. The algorithm for
computing emerging refracted rays is orthogonal to
the research we report here. To perform this com-
putation, we use an image-space approximation.4
Basically, the approximation uses a first rendering
pass to store depth and surface normals for back-
facing surfaces, which a second pass then uses to
compute the ray emerging after a second refraction.

Relief Texture Mapping
We trigger relief-texture-map rendering by render-
ing the primitives of the coarse underlying model.
To obtain correct silhouettes, we render each re-
lief tile’s bounding box (see Figure 12). For every
pixel, we transform the eye ray to the current relief
tile’s coordinate system, and intersection proceeds
as before. We compute the world space z at the
intersection for correct z-buffering with the rest
of the scene and for casting and receiving correct
shadows. We could compute shadows by shoot-

ing a second ray from the intersection to the light
source and intersecting it with the relief texture.
Instead, we use a conventional shadow map such
that the relief surface casts and receives shadows
from other objects and other relief tiles.

Nonpinhole relief textures capture complex ob-
jects in a single layer. Figure 13 shows that a conven-
tional relief texture misses the wheels and severely
undersamples the car’s sides. When tuning the
nonpinhole-camera parameters, our only concern
is to capture the relief adequately, independently
of the underlying base geometric model. With the
increased complexity of the geometry modeled with
the relief texture comes the desire to modulate the
appearance of individual instances of that texture.
We obtained the different-colored cars in Figure 4
with a single relief texture by simply modifying the
color of the intersection if it corresponds to the car
body, identified through its yellow color.

Ambient Occlusion
The horizon-based screen-space algorithm1 pro-
duces plausible ambient occlusion at little cost and
therefore has great appeal for interactive rendering
applications. It measures ambient occlusion solely
on the basis of the output image z-buffer. In other
words, it approximates the entire scene’s geometry
with the point samples visible from the current
viewpoint. This approximation is justified by the
heuristic that for simple scenes, the geometry oc-
cluding an output image pixel will likely be visible
from the current viewpoint and thus sampled by
the output image z-buffer.

However, this heuristic breaks down for more
complicated geometry. Some output image pixels
are occluded by geometry that isn’t visible from
the current viewpoint. The occluding geometry
isn’t represented in the output image z-buffer, and
the algorithm fails to assign the appropriate am-
bient occlusion to these pixels. The output image
z-buffer underestimates the geometry responsible
for occluding the output image samples; conse-
quently, the algorithm underestimates the ambi-
ent occlusion.

Moreover, as the output view changes, occluding
geometry can appear and disappear in the output
image z-buffer, which causes the ambient occlu-
sion to appear and disappear. When only the view
changes, the ambient occlusion should be stable.
However, the instability is quite noticeable, incor-
rectly suggesting that the lighting changes (see the
accompanying video).

Nonpinhole cameras can overcome this funda-
mental limitation of the horizon-based screen-
space algorithm. The main idea is to compute the

(a) (b)

Figure 13. Relief texture mapping, continued. (a) A conventional relief
texture. (b) The output image. The conventional relief texture misses
the wheels and severely undersamples the car’s sides.

(a) (b)

Figure 12. Relief texture mapping. (a) The SPOC relief texture. (b) The
output image with a relief bounding-box visualization. Rendering the
bounding boxes lets us obtain correct silhouettes.

	 IEEE Computer Graphics and Applications� 23

ambient occlusion using a nonpinhole z-buffer
that samples more of the geometry that occludes
the samples in the output image. This leads to a
better approximation of the ambient occlusion in
each output image and to more stability from im-
age to image. To realize this potential of nonpin-
hole z-buffers, we must overcome two challenges:

■■ specifying a nonpinhole camera that captures
the geometry needed to compute the ambient
occlusion for the current view, and

■■ preserving the performance advantage of the
horizon-based ambient-occlusion algorithm.

Unlike specular reflection and relief texture map-
ping, ambient occlusion requires probing visibility
along a 2D set of rays for each output image pixel.
The visibility half space at a pixel is sampled with
half planes; then each half plane is sampled with
rays. The horizon-based screen-space algorithm is
fast because it estimates occlusion in an entire
half plane by traversing a single output image z-
buffer segment. In Figure 14a, p is an arbitrary
output image pixel, e is the output image frus-
tum, and q is the extent of the search space. All
rays ri project to pq, and we estimate the occlu-
sion on the q side of ep by simply traversing pq.
We don’t need to cast rays ri. The dimensionality
of the space of rays that must be cast to probe
visibility decreases from 2 to 1.

We must maintain this property when porting
the algorithm to nonpinhole z-buffers. The SPOC
doesn’t have this property. For any pixel other
than the pole, no set of planes spans space with
each plane projecting to a curve. The planes have
a projection with a nonzero area. So, even though
the SPOC might sample more of the geometry
needed for decent ambient occlusion, using it in
this context is prohibitively slow.

Our graph camera enhances the output image
z-buffer with samples visible from two nearby
viewpoints and exhibits the desired property. The
camera topology is a simple binary tree consist-
ing of a root and two children. Figure 14b visual-
izes the rays of the graph camera used to render
the nonpinhole z-buffer in Figure 5. The graph
camera has three subfrustums: the output image
frustum e up to a vertical plane through the split-
ting point s, and the left and right frustums l and
r beyond.

Recall that the graph camera projection is equiv-
alent to a series of conventional projections. Once
the leaf projection collapses a plane to a line, sub-
sequent projections map the line to lines. Conse-
quently, just as with a conventional planar pinhole
camera, a line segment in the graph camera im-
age corresponds to a plane in 3D space. Consider
sample S in the graph camera z-buffer in Figure 5
and the line segment connecting it to sample Q.
The plane defined by the viewpoint of the right
frustum and 3D points S and Q projects to graph
camera image line SQ. As before, we examine vis-
ibility in the entire plane by tracing SQ.

Our enhanced horizon-based screen-space algo-
rithm proceeds as follows:

1.	 Render the output image without ambient
occlusion.

2.	 Construct a graph camera for the output view.
3.	 Render the z-buffer with the graph camera.
4.	 For each pixel in the output image, add ambient

occlusion using the graph camera z-buffer.

Like the conventional algorithm, this algorithm de-
lays the calculation of ambient occlusion until the
final step, in order to calculate only the effect for
the visible samples. Steps 2 and 3 are the new steps
added to the conventional algorithm.

Image plane

s
r

r3
e

p

s

q
r2

r1
r0

e
l

(a) (b)

Figure 14. Ambient occlusion. (a) The screen-space ambient-occlusion algorithm. (b) Visualization of the graph
camera model used in Figure 5. e is the output image frustum, p is an arbitrary output image pixel, q is the extent
of the search space, s is the splitting point, ri indicates various rays, and l and r are the left and right frustums.

24	 September/October 2011

Feature Article

At step 2, we construct the graph camera to
achieve the desired disocclusion. The graph camera
depends on the current view. The splitting plane
where the root frustum ends and the left and
the right frustums begin is perpendicular to the
current view direction. One option is to keep the
splitting point at the object’s centroid. For the
example in this article, the splitting point moves
on the blue curve in Figure 14b. We designed the
curve offline to move the splitting point smoothly
behind the dragon. We did this because the dragon
is seen sideways, so a conventional z-buffer suffices
(see the accompanying video).

At step 3, the rendering of the graph camera
z-buffer efficiently leverages the camera’s closed
form and low-cost projection. At step 4, we use the
graph camera z-buffer like a conventional z-buffer:
we integrate the current pixel’s ambient occlusion
along line segments that emanate radially from
the pixel. Like a conventional camera, the graph
camera lets us recreate a 3D point from a pixel and
a depth value by unprojection.

Limitations
Our method achieves results comparable to ray
tracing (see Figure 15). However, it has several
limitations.

Absent Self-Reflections
Our method could, in principle, support self-
reflections by also intersecting the reflected rays
with a depth image of the reflector. However, the
additional intersection is probably a price interac-
tive applications aren’t willing to pay.

Coarse Silhouettes
An SPOC depth image doesn’t sample the entire
object it replaces. The sampled area ends with a
jagged edge when the SPOC rays are tangential to
the replaced geometry (see Figure 7). When the
jagged edge is exposed, the reflection’s silhouette
becomes coarse. One possible solution is to smooth
the edge as a preprocess, which would preclude dy-
namic scenes. Instead, we alleviate the problem at
runtime by alpha-blending the intersection sample
with greater transparency when the SPOC ray be-
comes tangential to the sampled surface.

Undersampling
As with all sample-based methods, the quality of
the results from nonpinhole depth images is con-
tingent upon adequate sampling. The SPOC sam-
pling rate is uniform and controllable. The graph
camera sampling rate isn’t uniform: it’s higher
closer to the initial frustum and lower for the dis-

(a) (b)

Figure 15. Comparing (a) our method to (b) ray tracing. Our method achieves comparable results.

	 IEEE Computer Graphics and Applications� 25

tant frustums. We constructed the graph camera
depth image to capture the entrance at a higher
resolution, where reflections are of the highest
quality (see Figure 8). Deeper into the maze the
resolution decreases, leading to aliasing artifacts
due to the large output-image projection of depth
image pixels, a problem similar to inadequate
shadow map resolution. In Figure 16, the teapot
is at the maze’s upper left (see Figure 8) and thus
deepest in the graph camera depth image, where
sampling insufficiency is noticeable.

However, this case is particularly challenging: a
smooth, highly specular surface reflects a contrast-
ing checker pattern. We use a graph camera depth
image resolution of 1,920 × 1,175. A brute-force so-
lution is to increase the resolution further. Another
possibility is to divide the maze into several parts,
each with its own smaller graph camera depth im-
age. Finally, we could also use a hybrid sample-
based and geometry-based technique that incorpo-
rates “infinite frequency” edges into textures.

Missing Samples
The most visible artifacts in nonpinhole relief tex-
ture mapping are due to samples still missing from
the relief texture owing to residual occlusions. The
rear bumper of the car in Figure 4 occludes some
of the car body in the relief texture, which causes
the shimmering “rubber band” surface seen in the
video. One solution is to modify the car model to
reduce the distance between the bumper and the
car’s body by pushing the bumper in or thickening
it. Another solution is to encode the bumper in a
second relief texture layer.

Performance
We collected the timing information on a 3.4-

GHz, 2-Gbyte Intel Xeon PC with a 768-Mbyte
Nvidia 8800 Ultra card. We used Nvidia’s Cg 2.0
shading language with gp4 profiles. An important
performance factor was the number of steps
along the ray’s projection, which we analyzed for
reflections.

We took coarse steps first and performed a
fuzzy intersection of the coarse ray segment with
the nonpinhole depth map. If the two endpoints
projected at unoccupied locations or the coarse ray
segment clearly didn’t intersect the impostor depth
map, the coarse segment was trivially rejected. We
refined coarse segments by performing fine steps
of 1, 1/2, or 1/4 depth image pixels.

Figure 17 illustrates the number of steps for a
512 × 512 SPOC depth image, a six-pixel coarse
step, and a 1/4-pixel fine step. More steps were
needed when the reflected ray narrowly missed
the teapot, which caused the fuzzy test to return
a false positive. The average number of steps was
48 per output pixel, including both coarse and fine
steps. For fine steps of 1 and 1/2 pixel, the average
number of steps was 22 and 31, respectively. These

Figure 16. Undersampling artifacts on floor reflection. The teapot is
at the maze’s upper left (see Figure 8) and thus deepest in the graph
camera depth image, where sampling insufficiency is noticeable.

(a) (b)

Figure 17. Visualization of intersection operations needed for each reflected ray. (a) A diffuse teapot reflected
in the body of a large teapot. (b) Visualization of the number of intersection steps per pixel. More intense red
color indicates regions that required more intersection steps.

26	 September/October 2011

Feature Article

numbers don’t account for pixel processor idling
due to SIMD (single instruction, multiple data)
processing constraints. Figure 18 shows the reflec-
tion silhouette quality for various fine-step sizes.

Performance depended on the output image
resolution and fine-step size (see Table 1). We
measured performance on a typical path (see the
video) for the scene in Figure 1. We used eight-
sample multisampling antialiasing (8 × MSAA), a
512 × 512 SPOC depth image, and a coarse step of
six pixels. For an output resolution of 640 ×480,
with 8 × MSAA, the average frame rates for SPOC
depth images of resolution 128 × 128, 256 × 256,
512 × 512, and 1,024 × 1,024 were 55.8, 36.6, 26.5,
and 16.1 fps, respectively. For coarse steps of 3, 6,
9, and 12 texels, the average frame rates were 18.2,
31.0, 37.2, and 39.8 fps, respectively. The only
feature thin enough to be affected by the coarser
steps was the spout’s tip. For a sequence in which
the SPOC depth image was recomputed on the fly
(see the video), the average frame rates were 22 fps
for no antialiasing and 17.3 fps for 16 × MSAA.

Coarse stepping reduced the number of steps for
the graph camera depth image as well. This is evi-
dent in Figure 19, in which the average number of
steps decreased from over 155 to 27. The reflection
of the main entrance, where the graph camera im-
postor had the highest resolution, remained the
area with the most activity on the teapot. How-
ever, only a few pixels had large step numbers. The
graph camera impostor was constructed at over
100 fps. The average, minimum, and maximum
frame rates for the path that followed the teapot
through the maze (see the video) were 45.5, 30.0,

and 105.0 fps without antialiasing, and 26.8, 20.0,
and 42.0 fps with 8 × MSAA, respectively.

We plan to accelerate the ray-and-depth-image
intersection computation further by leveraging
ray coherence. We envision a two-pass approach
that first renders the reflection at lower resolution
and then upsamples by interpolation in coherent
regions. The second pass would compute intersec-
tions only at regions where the lower-resolution
results weren’t sufficient to reconstruct a quality
intersection, such as at edge regions.

We constructed nonpinhole relief texture maps
with an SPOC; our previous discussion of the per-
formance of ray intersection in the context of re-
flections still applies. For Figure 4, the overall per-
formance, including shadow mapping, was 14 fps
for the 40 cars and 18 fps for the 60 barrels. The
output resolution was 640 × 480, and the relief
texture resolution was 512 × 512. For 20 cars, 10
cars, and 1 car, the performance was 26, 51, and
219 fps, respectively. All the examples we’ve shown
used tall relief, which implies long ray projections.
For scenes with short relief, performance was even
higher—for example, 46 fps for 160 cars half the
size of the previous examples (see Figure 20).

We investigated ambient-occlusion performance
for two quality occlusion sampling settings: regu-
lar (six sampling directions and six steps per direc-
tion) and fine (32 and 20). In both cases, the blur
kernel width was 21 pixels and the output image
resolution was 1,024 × 1,024.

The average performance for the dragon scene
(see Figure 5) was 35 and 16 fps for the regular
and fine settings, respectively. Figure 5 and the

Table 1. Frame rates for the scene in Figure 1.

Output resolution

640 × 480 800 × 600 1,024 × 768

Fine-step size (pixels) 1 1/2 1/4 1 1/2 1/4 1 1/2 1/4

Avg. fps 26.5 20.7 15.0 20.9 16.5 11.6 15.2 11.8 8.0

Min. fps 18 14 8 14 10 4 10 8 6

Max. fps 54 46 36 48 15 34 40 34 28

(a) (b) (c)

Figure 18. A silhouette detail with fine steps of (a) 1, (b) 1/2, and (c) 1/4 pixel. Smaller step sizes produce
better antialiasing effects at object silhouettes, at the cost of increased intersection calculations.

	 IEEE Computer Graphics and Applications� 27

video used the fine setting. The regular setting
produced noisier ambient occlusion; this issue
was orthogonal to the use of the nonpinhole z-
buffer. Rendering the locally illuminated output
image, rendering the graph camera z-buffer, and
adding ambient occlusion took 5.9, 16.0, and 6.0
ms for the regular setting and 5.9, 16.0, and 40.0
ms for the fine setting, respectively. For the con-
ventional algorithm, rendering the locally illumi-
nated output image and adding the ambient oc-
clusion took 5.9 and 5.9 ms for the regular setting
and 5.9 and 32.0 ms for the fine setting, respec-
tively. Sampling occlusion in the graph camera
z-buffer as opposed to the conventional z-buffer
incurred a 25 percent penalty. Most performance
loss was due to having to render the graph camera
z-buffer for the 890K-triangle scene. However, in
some scenes, updating the graph camera z-buffer
for every frame was unnecessary.

The nonpinhole z-buffer saw more than what
was visible in the output image, which greatly
extended its resiliency to output view changes.
For example, we could reuse the z-buffer in Figure
5 if we viewed the dragon only from the front.
This increased performance to 21 fps for the fine

setting, approaching the conventional algorithm’s
26 fps. We could also use a simplified version of the
model when computing the nonpinhole z-buffer.

(a)

(c)

(b)

(d)

Figure 19. Teapot (a) location and (b) reflection, and the number of steps for visualization (c) without and (d)
with coarse stepping. Brighter red indicates more steps. Initially taking coarser steps can significantly reduce
the total number of steps. However, this approach might miss fine details.

Figure 20. A short-relief example. Here, performance was higher than
for tall relief.

28	 September/October 2011

Feature Article

We’ve shown that nonpinhole depth im-
ages provide efficient ray intersection at

the small additional cost of traversing a curved—
as opposed to a straight—ray projection. As we
mentioned before, we leveraged this property to
render specular reflections, refractions, relief tex-
ture mapping, and ambient occlusion. In prior
research, we also used depth-discontinuity occlu-
sion cameras to render soft shadows at interactive
rates.5 (For more on these and other nonpinhole
cameras, see the “Nonpinhole Cameras” sidebar.)
The suitability of nonpinholes to so many render-
ing problems argues for the technique’s generality.

Compared to reflection-rendering techniques,
such as explosion maps,6 that approximate the
projection of reflected points, our method produces
multiple projections of the same object at no extra

cost and handles complex reflectors. Compared to
color-caching image-based techniques, our method
supports dynamic scenes and has reduced memory
requirements. Color-caching techniques excel at
capturing the appearance of complex real-world
materials that are glossy but not specular. Our
method produces better results than environment
mapping, but at a higher per-pixel cost. Compared
to ray tracing, our method more easily minifies and
magnifies reflections by working in the color map
at different resolution levels, and it achieves fast
ray-and-geometry intersection. Ray tracing has a
quality advantage because it doesn’t approximate
the reflected geometry. Compared to conventional
relief texture mapping, the nonpinhole relief maps
bring greater modeling power at the cost of a more
expensive ray-and-relief-texture intersection.

The overwhelming majority of the images used in com-
puter graphics, visualization, and computer vision are

rendered or acquired with a pinhole camera: all rays pass
through a common point, the pinhole. This leads to effi-
cient computational and physical camera implementations
that compute and acquire images similar to those cap-
tured by the human visual system. However, the pinhole
requirement is quite restrictive.

Nonpinholes are powerful cameras that can capture
rays originating at different points in space. Computer
vision researchers have used them to model complex
lens and catadioptric systems, including the pushbroom
camera,1 the two-slit camera,2 and their generalization,
the general linear camera.3 General linear cameras enable
a powerful framework for designing multiperspective im-
ages, but rendering is done by ray tracing.4

Research in artistic rendering has used nonpinhole
cameras to simulate deviations from the conventional
perspective that artists adopt for aesthetic reasons.5 In
scene sampling, the most relevant context here, one prior
nonpinhole camera is the multiple-center-of-projection
camera, which samples the scene with a vertical slit along
a user-chosen path, thus avoiding redundancy and offer-
ing sampling flexibility.6 However, construction requires
rendering the scene for each position along the path. In
cel animation, multiperspective panoramas capture all 3D
scene samples seen along a camera path. This lets anima-
tors simulate camera motion by sliding a frame over the
panorama, but the view is confined to the path, and the
scene must be static.7

Occlusion cameras aim to address disocclusion errors.
Given a reference view and a 3D scene, occlusion cameras
build a single-layer image that stores samples visible from the
reference viewpoint and from nearby points. They include
the single-pole occlusion camera we discuss in the main

article, the depth-discontinuity occlusion camera (DDOC),8
and the epipolar occlusion camera (EOC).9 The DDOC speci-
fies the distortion through a map; the added flexibility comes
at the cost of increased construction time. The EOC captures
all the samples visible as the viewpoint translates between
two given points. It effectively generalizes a planar pinhole
camera’s viewpoint to a viewsegment. However, it supports
translation only along a single direction.

References
	 1.	 R. Gupta and R. Hartley, “Linear Pushbroom Cameras,” IEEE

Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 9,

1997, pp. 963–975.

	 2.	 T. Pajdla, Geometry of Two-Slit Camera, tech. report CTU–

CMP–2002–02, Czech Technical Univ., 2002.

	 3.	 J. Yu and L. McMillan, “General Linear Cameras,” Proc. 8th

European Conf. Computer Vision (ECCV 04), vol. 2, LNCS 3022,

Springer, 2004, pp. 14–27.

	 4.	 J. Yu and L. McMillan, “A Framework for Multiperspective

Rendering,” Proc. 2004 Eurographics Symp. Rendering, Euro-

graphics Assoc., 2004, pp. 61–68.

	 5.	 M. Agrawala, D. Zorin, and T. Munzner, “Artistic Multipro-

jection Rendering,” Proc. 2000 Eurographics Workshop Ren-

dering Techniques, Eurographics Assoc., 2000, pp. 125–136.

	 6.	 P. Rademacher and G. Bishop, “Multiple-Center-of-Projec-

tion Images,” Proc. Siggraph, ACM Press, 1998, pp. 199–206.

	 7.	 D. Wood et al., “Multiperspective Panoramas for Cel Anima-

tion,” Proc. Siggraph, ACM Press, 1997, pp. 243–250.

	 8	 V. Popescu and D. Aliaga, “The Depth Discontinuity Occlu-

sion Camera,” Proc. 2006 Symp. Interactive 3D Graphics (I3D

06), ACM Press, 2006, pp. 139–143.

	 9.	 P. Rosen and V. Popescu, “The Epipolar Occlusion Camera,”

Proc. 2008 ACM Symp. Interactive 3D Graphics (I3D 08), ACM

Press, 2008, pp. 115–122.

Nonpinhole Cameras

	 IEEE Computer Graphics and Applications� 29

Besides the directions for future research that
we already sketched, we’ll investigate integrating
our nonpinhole rendering framework into popular
digital 3D content creation tools. Our research
argues for the benefits and practicality of camera
models that abandon the pinhole constraint.
Nonpinhole cameras can provide powerful yet
inexpensive approximations for many applications
in graphics and beyond.�

References
	 1.	 L. Bavoil and M. Sainz, “Image-Space Horizon-Based

Ambient Occlusion,” Siggraph 2008 Talks, ACM
Press, 2008, article 22.

	 2.	 C. Mei, V. Popescu, and E. Sacks, “The Occlusion
Camera,” Computer Graphics Forum, vol. 24, no. 3,
2005, pp. 335–342.

	 3.	 V. Popescu, P. Rosen, and N. Adamo-Villani, “The
Graph Camera,” ACM Trans. Graphics, vol. 28, no.
5, 2009, article 158.

	 4.	 C. Wyman, “An Approximate Image-Space Approach
for Interactive Refraction,” ACM Trans. Graphics,
vol. 24, no 3, pp. 1050–1053.

	 5.	 Q. Mo, V. Popescu, and C. Wyman, “The Soft
Shadow Occlusion Camera,” Proc. 15th Pacific Conf.
Computer Graphics and Applications (PG 07), IEEE
Press, 2007, pp. 189–198.

	 6.	 E. Ofek and A. Rappoport, “Interactive Reflections

on Curved Objects,” Proc. Siggraph, ACM Press,
1998, pp. 333–342.

Paul Rosen is a research assistant professor in the Univer-
sity of Utah’s Scientific Computing and Imaging Institute.
His research interests are camera model design, multicore
and parallel desktop computing, visualization of large-scale
datasets, and uncertainty visualization. Rosen has a PhD
in computer science from Purdue University. Contact him at
prosen@sci.utah.edu.

Voicu Popescu is an associate professor in Purdue Univer-
sity’s Computer Science Department. His research interests
are computer graphics, computer vision, and visualization.
Popescu has a PhD in computer science from the University
of North Carolina at Chapel Hill. Contact him at popescu@
cs.purdue.edu.

Kyle Hayward is a graphics programmer for Human Head
Studios. His research interest is real-time ray tracing on
GPUs. Hayward has a BS in computer science from Purdue
University. Contact him at khayward@purdue.edu.

Chris Wyman is an associate professor of computer science
at the University of Iowa. His research interests are interac-
tive global illumination and other interactive and realistic
rendering problems, visualization, and perceptual issues in
rendering. Wyman has a PhD in computer science from the
University of Utah. Contact him at cwyman@cs.uiowa.edu.

