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In the quest for higher-quality and higher-
performance rendering, researchers have re-
sorted to approximating scene geometry with 

more efficient representations. 
Such representations should 
have three main properties. First, 
they should sufficiently capture 
the geometry they replace such 
that the resulting images are 
virtually indistinguishable from 
the images obtained when ren-
dering with the original geome-
try. Second, to support dynamic 
scenes, the representations must 
be created on the fly, which re-
quires fast construction. Finally, 
the alternative representation 
must deliver the desired perfor-
mance boost to the application.

We distinguish between two 
types of applications:

■■ applications in which the representation can be 
rendered directly with the conventional feed-
forward approach of projection followed by 
rasterization, such as when a distant tree is ren-
dered using a billboard (for more on billboards, 
see the “Image-Based Geometry Approximation” 
sidebar), and

■■ applications in which the representation must 
be rendered by intersection with one ray at a 
time, such as for dealing with reflections, re-

fractions, relief texture mapping, and ambient 
occlusion.

This article focuses on the second type of appli-
cation. For such applications, fast computation of 
the intersection between a ray and the alternative 
geometry representation is a central concern.

Images enhanced with per-pixel depth have two 
of the desired properties. Efficient construction of 
a depth image employs graphics hardware to render 
the geometry that the image replaces. The projec-
tion of a ray onto the depth image is a segment. 
This reduces the dimensionality of the search space 
for the intersection of the ray and depth image 
from two to one, enabling fast intersection. Mod-
ern graphics hardware allows stepping along the 
ray projection, per pixel, at interactive rates. How-
ever, depth images are acquired either from a single 
viewpoint (with a planar pinhole camera) or along 
a single view direction (with an orthographic cam-
era), which limits their geometry-modeling power. 
Such depth images miss surfaces that become vis-
ible when the application renders the geometry ap-
proximation; this lowers the results’ quality.

We propose constructing depth images using 
nonpinhole cameras. Such depth images offer a 
high-fidelity approximation of scene geometry while 
keeping construction and rendering costs low. Be-
cause a nonpinhole camera’s rays don’t have to pass 
through one point, we can design them to sample 
all surfaces exposed by the application. To ensure 
construction and rendering efficiency, we design 

Orthographic or perspective 
images are often used to 
approximate geometry for 
rendering high-order effects. 
These approximations capture 
only what’s visible from 
one direction or viewpoint. 
Nonpinhole cameras can 
improve approximation quality 
at little additional cost. These 
proposed pinhole cameras 
demonstrate these advantages 
by way of reflections, refractions, 
relief texture mapping, and 
ambient occlusion.
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the nonpinhole camera to provide fast projection. 
This enables constructing the nonpinhole depth 
image in feed-forward fashion by projection fol-
lowed by rasterization. We leverage the closed-form, 
unambiguous projection of the nonpinhole camera 
a second time, during rendering, to compute the 
ray’s projection onto the nonpinhole image.

Why Use Nonpinhole Cameras?
Nonpinhole depth images provide advantages re-
garding reflection, refraction, relief texture map-
ping, and ambient occlusion (also see the accom-
panying video at http://doi.ieeecomputersociety.
org/10.1109/MCG.2011.32).

Reflection and Refraction
In Figure 1, the nonpinhole depth image captures 
all the teapot surfaces exposed in the reflections, 
whereas a conventional depth image produces 

incomplete reflections. We find the intersection 
between a reflected ray and the depth image by 
searching along the curved projection of the ray 
(see Figure 2). This differs from planar pinhole 
cameras, where the ray projection is a straight line.

We similarly support refractions by intersecting 
the depth image with refracted rays (see Figure 3).

Relief Texture Mapping
Nonpinhole cameras greatly enhance the model-
ing power of relief texture mapping. A single-layer 
nonpinhole relief texture captures the entire top and 
sides of a barrel or an entire car to produce quality 
frames with rich detail (see Figure 4a). In contrast, 
a single-layer conventional relief texture misses a 
considerable part of the barrel (see Figure 4b). A 
multilayered relief texture is impractical in this 
case because a proper sampling of the barrel’s side 
would require a prohibitively large number of layers.

Paolo Maciel and Peter Shirley coined the term impostor, 
which now widely denotes an image-based simpli-

fied representation of geometry to make rendering more 
efficient.1 The simplest impostor is a billboard, a quad 
texture mapped with the image of the original geometry, 
with transparent background pixels. Billboard construc-
tion is efficient, intersecting a billboard with a ray is trivial, 
and billboards provide good approximations of geometry 
seen orthogonally from a distance. However, when the 
billboard is near the viewer, the drastic approximation of 
geometry is unacceptable.

Billboard clouds use several quads to improve model-
ing quality.2 The quads and the assignment to the original 
geometry are optimized for modeling fidelity. The number 
of quads is small, and a billboard cloud can be intersected 
with a ray one quad at a time. However, the optimization 
makes constructing a billboard cloud a lengthy process that 
precludes dynamic scenes. Moreover, the approximation 
quality is still insufficient for close-up viewing.

Depth images greatly improve billboards’ modeling 
power.3 Constructing a depth image is just as inexpensive 
as constructing a billboard, but the cost of intersection with 
a ray is no longer constant but linear in the depth image 
width. To avoid searching for the intersection in the entire 
image, depth image construction leverages epipolar-like 
constraints: the intersection is known to belong to the im-
age plane projection of the ray. Because the depth image is 
constructed with an orthographic or a perspective projec-
tion, it captures only samples visible along the reference 
direction or from the reference viewpoint. When the ap-
plication exposes surfaces the depth image didn’t capture, 
objectionable disocclusion artifacts occur.

The simplest method for alleviating disocclusion errors 

is to use additional depth images,4 which is expensive and 
only palliative. A breakthrough came with the introduc-
tion of layered representations such as the multilayered 
z-buffer5 and the layered depth image,6 which allow for 
more than one sample along a ray and control disocclu-
sion errors effectively. However, expensive construction 
restricts layered representations to static scenes. Moreover, 
the lack of a connected representation makes ray intersec-
tion difficult, precluding rendering effects such as those 
we address in the main article.

As graphics hardware evolved, intersecting depth 
images with individual rays became possible, and research 
shifted to rendering effects involving higher-order rays.
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(a) (b)

Figure 1. Reflections calculated using nonpinhole versus conventional images. (a) A nonpinhole depth image of a teapot and the 
reflections rendered with it. (b) A conventional depth image and reflection rendered with it. The nonpinhole depth image captures 
the teapot’s lid and bottom and produces quality reflections; the conventional depth image produces incomplete reflections.

(a) (b)

Figure 2. Visualization of (a) rays in 3D and (b) their curved projection on the nonpinhole depth image in Figure 
1. The curved rays of the nonpinhole allow access to regions not visible from a perspective or orthographic view.

(a) (b)

Figure 3. Refractions calculated using a nonpinhole depth image of a teapot similar to the one in Figure 1. 
Whereas accurate reflections might require many conventional views to calculate, nonpinholes can be used to 
circumvent this limitation.

(a) (b)

Figure 4. Nonpinhole versus conventional relief texture mapping. (a) Nonpinhole relief texture maps and the frames rendered 
with them. (b) Conventional relief texture mapping. The nonpinhole relief texture captures the top and sides of the barrel and 
car; the conventional relief texture misses a considerable part of the barrel.
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Ambient Occlusion
A promising technique for rendering with ambient 
occlusion at interactive rates is to use the output 
image z-buffer to approximate the exposure of 
output image samples to the environment.1 How-
ever, the amount of occlusion for visible samples 
also depends on samples not visible in the output 
image. This makes the ambient occlusion unstable, 
with dark regions appearing and disappearing as ge-
ometry subsets appear and disappear in the output 
image. We propose using a nonpinhole z-buffer that 
captures most samples needed to estimate the oc-
clusion of output image samples, producing more 
complete and more stable ambient occlusion (see 
Figure 5).

Nonpinhole-Camera Depth Images
Abandoning the pinhole constraint lets us design 
the camera model to obtain the depth image best 
suited for the application and dataset at hand. Be-
fore we go into detail into our method, let’s look at 
construction and ray intersection for nonpinhole 
depth images in general.

Construction
Assume we have a nonpinhole camera with fast 
projection that maps a 3D point (x, y, z) to (u, v, z), 
where (u, v) indicates the image coordinates and z 
is a measure of depth linear in the image space. We 
can efficiently construct a nonpinhole depth image 
by projecting the vertices of the geometry that it 
will approximate and rasterizing the projected tri-
angles conventionally. The unconventional projec-
tion occurs in a vertex program that implements 
the nonpinhole-camera model. Because lines don’t 
necessarily project to lines anymore and because 
rasterization parameters don’t vary linearly (before 
the perspective divide) anymore, the triangles must 
be sufficiently small to provide an adequate approx-
imation. Complex objects are frequently modeled 
with small triangles, so additional tessellation usu-

ally is unnecessary. We can subdivide meshes with 
large triangles on the fly by exploiting primitive-
level GPU programmability.

Ray Intersection
Like a regular depth image, a nonpinhole depth im-
age is defined by an image with color and depth per 
pixel and by a camera model that allows projection. 
We compute the intersection of a ray (a, b) with a 
nonpinhole depth image NPI in two main steps.

First, we clip segment (a, b) with the bounding vol-
ume of NPI to obtain segment (c, d) (see Figure 6).

Second, we interpolate (c, d) in 3D from near to 
far to create n subsegments. For each subsegment 
(sk, sk+1), we project sk and sk+1 to the depth image 
at pixels pk = (uk, vk, zk) and pk+1 = (uk+1, vk+1, zk+1). 
Next, we perform a lookup of image depths izk, izk+1 
at (uk, vk), (uk+1, vk+1). We then intersect [(0, zk), (1, 
zk+1)] and [(0, izk), (1, izk+1)] in 2D segments to 
obtain intersection (tj, zj), where t is the parameter 

(a) (b) (c)

Q

S

Figure 5. Screen-space ambient occlusion calculated using nonpinhole versus conventional images. (a) A nonpinhole z-buffer 
illustrated with color (Q and S indicate two samples). (b) The ambient occlusion rendered using it. (c) The ambient occlusion 
rendered using the output image z-buffer. The nonpinhole z-buffer captures hidden parts of the dragon for a more complete and 
more stable ground shadow.
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Figure 6. The intersection of a ray and a nonpinhole depth image, for 
a depiction of a teapot. iz indicates the image depth, (c, d) indicates a 
segment, (sk, sk+1) indicates a subsegment, p indicates a pixel, t is the 
parameter locating the intersection along a segment, and u and v are 
the image coordinates.
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locating the intersection along segment (pk, pk+1). 
If (tj, zj) is valid, we return the depth image color 
icj at lerp((uk, vk), (uk+1, vk+1), tj). Otherwise, we 
continue with the next subsegment.

We interpolate the ray in 3D because its projec-
tion isn’t a straight line and we can’t simply ras-
terize the segment connecting the endpoint projec-
tions. We project each intermediate point with the 
nonpinhole camera to trace the curved projection 
correctly. Because the depth z stored by the depth 
image varies linearly in the image, we can efficiently 
compute the intersection in a 2D space (t, z).

Specializing the Depth Images
Here, we show how we construct depth images by 
adapting two recent nonpinhole camera models: 
the single-pole occlusion camera (SPOC)2 and graph 
camera.3

The SPOC
The SPOC reaches around an object’s silhouette 
to gather samples not visible from the reference 
viewpoint but near the silhouette. Such “barely” 
occluded samples are needed when the depth image 
is sampled from nearby viewpoints. The SPOC is 
well suited for approximating single objects; we 
used it for Figures 1 to 4.

The SPOC projection uses a conventional projec-
tion followed by a distortion that moves the pro-
jected sample away from a pole.2 The pole is the 
projection of the object’s center. The distortion’s 
magnitude increases with depth, so deeper samples 
move more, escaping the occluding front surface. 
For the SPOC depth images in Figures 1 and 4, 
the distortion pushes the object silhouettes back, 
revealing the teapot’s lid and bottom, the barrel’s 
entire side, and the car’s side and wheels. Figure 7 
shows that the SPOC depth image captures about 
half of the teapot, which is sufficient to intercept 

all reflected rays that would intersect the original 
teapot geometry.

SPOC construction and intersection closely fol-
low the algorithms we described in the previous sec-
tion. We choose the number of subsegments n as 
the Euclidian distance between the projection of the 
endpoints of the clipped ray. This provides a good ap-
proximation of the actual number of pixels covered 
by the curved projection of the ray. Figure 2 visual-
izes the curved projections of a set of coplanar rays.

The Graph Camera
To construct a graph camera, we take a planar pin-
hole camera and perform a series of frustum bend-
ing, splitting, and merging operations. The result is a 
graph of planar pinhole cameras. The graph camera 
circumvents occluders to sample an entire 3D scene 
in a single-layer image. In Figure 8, the graph camera 
depth image models the entire reflected scene.

For the graph camera, we generalize the concept 
of a camera ray to the set of points projecting at the 
same given image location, which allows for rays 
that aren’t straight lines but are piecewise linear. A 
ray changes direction as it crosses the shared face 
separating two frustums, but it remains continuous, 
which makes the graph camera image continuous. 
Figure 9 shows the graph camera we constructed 
for the maze in Figure 8. The construction used a 
breadth-first traversal starting at the entrance.

Projecting a point with the graph camera takes 
two steps. First, we find the frustum containing the 
given 3D point. Then, we project the point directly 
to the output image with a 4D matrix that concate-
nates the projections of all the cameras on the path 
from the current frustum to the root. To find the 
frustum containing the point, we can use an octree 
or another hierarchical space subdivision.3 Using 
the projection, construction of the graph camera 
depth image proceeds as in the section “Construc-

(a) (b)

Figure 7. Visualizations of samples stored by (a) a conventional depth image and (b) a single-pole occlusion 
camera (SPOC) depth image. The SPOC depth image captures about half of the teapot, which is sufficient to 
intersect most of the reflected rays that will be needed to produce complete reflections.
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tion,” except that a triangle must be processed with 
each frustum it intersects.

To intersect a graph camera depth image with a 
ray, we can follow the generic algorithm: interpolate 
the ray uniformly in 3D space, and project each 
new point onto the graph camera image. However, 
because each frustum is a pinhole, a ray’s projection 
is piecewise linear (see Figure 10), which enables 
the following optimization. Given a ray r, for each 
graph camera frustum Fi, we follow these steps:

1.	 Intersect ray r with Fi to produce 3D subsegment 
(si, ei).

2.	 Project segment (si, ei) to graph camera image 
segment (pi, qi).

3.	 Walk on (pi, qi) to find the intersection.

The algorithm computes the ray’s linear pieces 
directly by intersecting the ray with all the frustums, 
producing a set of subsegments (si, ei). This is 
more efficient than the generic algorithm, which 
requires small 3D steps just to model the breaking 
points of the piecewise-linear projection with high 
fidelity. Each frustum is a planar pinhole camera, 
so each subsegment projection remains a straight 
line segment (pi, qi) in the output graph camera 
image. The optimized algorithm interpolates the 
subsegment to search for the intersection step by 
step, similarly to the generic algorithm.

Applications to Interactive Rendering
Nonpinhole depth images accelerate reflection, re-
fraction, relief texture mapping, and ambient oc-
clusion as follows.

Reflection
To render a frame of a scene with specular reflec-
tions, we first update the depth images that ap-
proximate the reflected geometry that’s dynamic. 
Then, we render each reflector by computing a re-
flected ray per pixel, a step similar to environment 
mapping, and by intersecting the reflected ray with 
the reflected geometry’s depth images. (For more 
on environment mapping, see the “Using Depth 
Images to Accelerate Rendering” sidebar.)

As with environment-mapped reflections, the 
process produces multiple reflections of the same 
object at no extra cost. Consider Figure 11a, in 
which the concave bunny reflects the teapot multi-
ple times. We compute the reflection one ray at the 
time; the fact that two or more rays reflect the same 
3D point has no bearing on the method’s cost.

Our method supports fully dynamic scenes be-
cause it doesn’t require precomputation involving 
the reflector and it efficiently computes the non-

pinhole depth images. It supports higher-order 
reflections by storing per-pixel normals. We use 
the normal at a first intersection point to create 
a second-order reflected ray that intersects depth 
images again (see Figure 11b).

When deciding how to approximate reflected 
geometry, we want to devise the simplest approxi-
mation that captures all samples visible in reflec-
tions. For example, a billboard perfectly captures 
the black-and-white ground plane in the reflec-
tions in Figure 11. The billboard captures the SPOC 

(a)

(b) (c)

Figure 8. Using a graph camera for reflections. (a) A graph camera depth 
image capturing an entire 3D maze. (b) An overhead view of the maze. 
(c) The reflection rendered using the depth image.

Figure 9. A graph camera model for the maze in Figure 8. The frustums 
are red; a few rays are shown in white. The construction used a breadth-
first traversal starting at the entrance.
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depth image of the teapot along the direction that 
connects the centers of the bunny and teapot. We 
set the SPOC’s field of view to the smallest value 
that encompasses the teapot. The SPOC allows 
for some flexibility in tuning the disocclusion. 
For the teapot, more disocclusion means a better 

sampling of the lid and bottom and pushing back 
the body’s silhouette. However, a single SPOC 
can’t disocclude the entire teapot because the 
handle and spout will start occluding the body. If 
the teapot were spinning or if multiple reflectors 
surrounded the teapot, the best solution would be 
to use two depth images capturing complemen-
tary halves of the teapot. SPOCs are suitable for 
capturing individual objects, and graph cameras 
are suitable capturing an entire environment.

We want to select the minimum depth image 
resolution that captures the reflected geometry well. 
This way, we obtain the best reflection regardless of the 
rate at which the depth image is sampled by reflected 
rays in any given frame. Consider a divergent pattern 
of rays, as obtained off a convex reflective surface or 
a concave reflective surface beyond the convergence 
point. Such a pattern will minify the reflected 
object, which is handled straightforwardly through 
mip-mapping. Like conventional depth images, 
nonpinhole depth images have the great advantage 

Here, we look at previous research applying depth im-
ages to reflection, refraction, relief texture mapping, 

and ambient occlusion.

Reflection and Refraction
Although interactive-rendering research has extensively 
studied reflection and refraction, no complete solution 
exists. We assign reflection and refraction rendering 
techniques to four groups: ray tracing,1 image-based ren-
dering,2 projection,3 and reflected- or refracted-scene ap-
proximation. Here, we discuss only the last group, which is 
the most relevant to our research.

Environment mapping approximates reflected scenes with 
a cube map.4 It’s the preferred approach for interactive appli-
cations owing to its efficiency, robustness, and good results 
when the scene geometry is far from the reflector or refrac-
tor. However, it performs poorly when the scene geometry 
is near the reflector or refractor. Approximating the scene 
with a sphere improves the results,5 but few environments 
are spherical, so the fidelity is still quite limited. Using depth 
images can improve scene approximation.6,7 Environment 
mapping produces quality reflections for simple objects or 
select viewpoints, but its insufficient coverage is a limitation 
for nontrivial scenes or wide viewpoint translations.

Compared to reflection, refraction rays require addi-
tional work because most rays interact with the refractor 
at least twice—once when entering the object and once 
when leaving it. Researchers have developed several tech-
niques for computing the second refraction at interactive 
rates, including precomputed distance fields,8 GPU ray 
tracing,9 and image-space approximations.10

Relief Texture Mapping
Another rendering effect that requires intersecting depth 
images with individual rays is relief texture mapping.11 This 
approach adds true geometric detail to a coarse model by 
texturing each triangle with a height map. A conventional 
relief texture samples surface detail orthographically, 
along the direction of the normal of the underlying coarse 
model, which limits the technique to height-field surfaces. 
Even so, sampling degrades when the geometric detail be-
comes aligned with the normal of the underlying surface.

Researchers have extended relief texture mapping 
to non-height-field surface detail by resorting to a relief 
texture with multiple layers, each sampled orthographi-
cally.12 The extension works well when complex detail can 
be captured in a few layers, as with a chain link fence, for 
example. This extension can capture double-sided detail. 
However, capturing geometric detail perpendicular to the 
underlying surface remains challenging because it requires 
many layers. Our research extends relief texture mapping 
in an orthogonal direction; multilayered nonpinhole relief 
textures could be developed to exploit both techniques’ 
advantages.

Ambient Occlusion
Ambient-occlusion techniques add realism to local illu-
mination models by approximating the amount of light a 
surface point receives on the basis of how much of the en-
vironment is hidden from the point by nearby geometry. 
The computational cost is high because a ray must be cast 
from each point in all directions. The first implementations 
precomputed ambient occlusion in model space offline,13 

Using Depth Images to Accelerate Rendering

(a) (b)

Figure 10. Visualization of (a) a 3D ray and (b) its piecewise linear 
projection in a graph camera image. This projection lets us optimize the 
ray intersection algorithm.



	 IEEE Computer Graphics and Applications� 21

of reducing the problem of geometry minification 
to the much simpler problem of image minification. 
A convergent pattern of rays, on the other hand, 
magnifies the reflected object, and the reflection 

will become undersampled once the sampling rate 
exceeds the depth image’s resolution. Because this is 
also the original geometry’s resolution, the problem 
can’t be imputed to the depth image.

which precluded dynamic scenes. Initial attempts to use 
GPUs to accelerate ambient occlusion employed many 
(128 to 1,024) spherical shadow maps of the scene.14

Our nonpinhole z-buffer ambient-occlusion method 
builds on an image-space technique that Louis Bavoil and 
his colleagues introduced.15 Their technique approximates 
the amount of ambient occlusion at an output pixel using 
the output image z-buffer. They noticed that to sample 
occlusion at a pixel for an entire half plane, traversing one 
z-buffer segment is sufficient. The result is fast ambient 
occlusion that supports dynamic scenes. However, the 
technique computes ambient occlusion as if the geometry 
seen by the output image were the only geometry in the 
scene, which can cause missing and unstable ambient-
occlusion artifacts.
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(a) (b)

Figure 11. Reflections: (a) Multiple. (b) Second-order. Using a nonpinhole depth image, multiple reflections 
can be calculated at no additional cost. Second- and higher-order reflections can also be calculated at the cost 
of an additional ray–depth-image intersection for each ray.
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Refraction
As we mentioned before, we render refractions by 
intersecting the emerging ray with the depth images 
that approximate the geometry. The algorithm for 
computing emerging refracted rays is orthogonal to 
the research we report here. To perform this com-
putation, we use an image-space approximation.4 
Basically, the approximation uses a first rendering 
pass to store depth and surface normals for back-
facing surfaces, which a second pass then uses to 
compute the ray emerging after a second refraction.

Relief Texture Mapping
We trigger relief-texture-map rendering by render-
ing the primitives of the coarse underlying model. 
To obtain correct silhouettes, we render each re-
lief tile’s bounding box (see Figure 12). For every 
pixel, we transform the eye ray to the current relief 
tile’s coordinate system, and intersection proceeds 
as before. We compute the world space z at the 
intersection for correct z-buffering with the rest 
of the scene and for casting and receiving correct 
shadows. We could compute shadows by shoot-

ing a second ray from the intersection to the light 
source and intersecting it with the relief texture. 
Instead, we use a conventional shadow map such 
that the relief surface casts and receives shadows 
from other objects and other relief tiles.

Nonpinhole relief textures capture complex ob-
jects in a single layer. Figure 13 shows that a conven-
tional relief texture misses the wheels and severely 
undersamples the car’s sides. When tuning the 
nonpinhole-camera parameters, our only concern 
is to capture the relief adequately, independently 
of the underlying base geometric model. With the 
increased complexity of the geometry modeled with 
the relief texture comes the desire to modulate the 
appearance of individual instances of that texture. 
We obtained the different-colored cars in Figure 4 
with a single relief texture by simply modifying the 
color of the intersection if it corresponds to the car 
body, identified through its yellow color.

Ambient Occlusion
The horizon-based screen-space algorithm1 pro-
duces plausible ambient occlusion at little cost and 
therefore has great appeal for interactive rendering 
applications. It measures ambient occlusion solely 
on the basis of the output image z-buffer. In other 
words, it approximates the entire scene’s geometry 
with the point samples visible from the current 
viewpoint. This approximation is justified by the 
heuristic that for simple scenes, the geometry oc-
cluding an output image pixel will likely be visible 
from the current viewpoint and thus sampled by 
the output image z-buffer.

However, this heuristic breaks down for more 
complicated geometry. Some output image pixels 
are occluded by geometry that isn’t visible from 
the current viewpoint. The occluding geometry 
isn’t represented in the output image z-buffer, and 
the algorithm fails to assign the appropriate am-
bient occlusion to these pixels. The output image 
z-buffer underestimates the geometry responsible 
for occluding the output image samples; conse-
quently, the algorithm underestimates the ambi-
ent occlusion.

Moreover, as the output view changes, occluding 
geometry can appear and disappear in the output 
image z-buffer, which causes the ambient occlu-
sion to appear and disappear. When only the view 
changes, the ambient occlusion should be stable. 
However, the instability is quite noticeable, incor-
rectly suggesting that the lighting changes (see the 
accompanying video).

Nonpinhole cameras can overcome this funda-
mental limitation of the horizon-based screen-
space algorithm. The main idea is to compute the 

(a) (b)

Figure 13. Relief texture mapping, continued. (a) A conventional relief 
texture. (b) The output image. The conventional relief texture misses 
the wheels and severely undersamples the car’s sides.

(a) (b)

Figure 12. Relief texture mapping. (a) The SPOC relief texture. (b) The 
output image with a relief bounding-box visualization. Rendering the 
bounding boxes lets us obtain correct silhouettes.
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ambient occlusion using a nonpinhole z-buffer 
that samples more of the geometry that occludes 
the samples in the output image. This leads to a 
better approximation of the ambient occlusion in 
each output image and to more stability from im-
age to image. To realize this potential of nonpin-
hole z-buffers, we must overcome two challenges:

■■ specifying a nonpinhole camera that captures 
the geometry needed to compute the ambient 
occlusion for the current view, and

■■ preserving the performance advantage of the 
horizon-based ambient-occlusion algorithm.

Unlike specular reflection and relief texture map-
ping, ambient occlusion requires probing visibility 
along a 2D set of rays for each output image pixel. 
The visibility half space at a pixel is sampled with 
half planes; then each half plane is sampled with 
rays. The horizon-based screen-space algorithm is 
fast because it estimates occlusion in an entire 
half plane by traversing a single output image z-
buffer segment. In Figure 14a, p is an arbitrary 
output image pixel, e is the output image frus-
tum, and q is the extent of the search space. All 
rays ri project to pq, and we estimate the occlu-
sion on the q side of ep by simply traversing pq. 
We don’t need to cast rays ri. The dimensionality 
of the space of rays that must be cast to probe 
visibility decreases from 2 to 1.

We must maintain this property when porting 
the algorithm to nonpinhole z-buffers. The SPOC 
doesn’t have this property. For any pixel other 
than the pole, no set of planes spans space with 
each plane projecting to a curve. The planes have 
a projection with a nonzero area. So, even though 
the SPOC might sample more of the geometry 
needed for decent ambient occlusion, using it in 
this context is prohibitively slow.

Our graph camera enhances the output image 
z-buffer with samples visible from two nearby 
viewpoints and exhibits the desired property. The 
camera topology is a simple binary tree consist-
ing of a root and two children. Figure 14b visual-
izes the rays of the graph camera used to render 
the nonpinhole z-buffer in Figure 5. The graph 
camera has three subfrustums: the output image 
frustum e up to a vertical plane through the split-
ting point s, and the left and right frustums l and 
r beyond.

Recall that the graph camera projection is equiv-
alent to a series of conventional projections. Once 
the leaf projection collapses a plane to a line, sub-
sequent projections map the line to lines. Conse-
quently, just as with a conventional planar pinhole 
camera, a line segment in the graph camera im-
age corresponds to a plane in 3D space. Consider 
sample S in the graph camera z-buffer in Figure 5 
and the line segment connecting it to sample Q. 
The plane defined by the viewpoint of the right 
frustum and 3D points S and Q projects to graph 
camera image line SQ. As before, we examine vis-
ibility in the entire plane by tracing SQ.

Our enhanced horizon-based screen-space algo-
rithm proceeds as follows:

1.	 Render the output image without ambient 
occlusion.

2.	 Construct a graph camera for the output view.
3.	 Render the z-buffer with the graph camera.
4.	 For each pixel in the output image, add ambient 

occlusion using the graph camera z-buffer.

Like the conventional algorithm, this algorithm de-
lays the calculation of ambient occlusion until the 
final step, in order to calculate only the effect for 
the visible samples. Steps 2 and 3 are the new steps 
added to the conventional algorithm.
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(a) (b)

Figure 14. Ambient occlusion. (a) The screen-space ambient-occlusion algorithm. (b) Visualization of the graph 
camera model used in Figure 5. e is the output image frustum, p is an arbitrary output image pixel, q is the extent 
of the search space, s is the splitting point, ri indicates various rays, and l and r are the left and right frustums.
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At step 2, we construct the graph camera to 
achieve the desired disocclusion. The graph camera 
depends on the current view. The splitting plane 
where the root frustum ends and the left and 
the right frustums begin is perpendicular to the 
current view direction. One option is to keep the 
splitting point at the object’s centroid. For the 
example in this article, the splitting point moves 
on the blue curve in Figure 14b. We designed the 
curve offline to move the splitting point smoothly 
behind the dragon. We did this because the dragon 
is seen sideways, so a conventional z-buffer suffices 
(see the accompanying video).

At step 3, the rendering of the graph camera 
z-buffer efficiently leverages the camera’s closed 
form and low-cost projection. At step 4, we use the 
graph camera z-buffer like a conventional z-buffer: 
we integrate the current pixel’s ambient occlusion 
along line segments that emanate radially from 
the pixel. Like a conventional camera, the graph 
camera lets us recreate a 3D point from a pixel and 
a depth value by unprojection.

Limitations
Our method achieves results comparable to ray 
tracing (see Figure 15). However, it has several 
limitations.

Absent Self-Reflections
Our method could, in principle, support self-
reflections by also intersecting the reflected rays 
with a depth image of the reflector. However, the 
additional intersection is probably a price interac-
tive applications aren’t willing to pay.

Coarse Silhouettes
An SPOC depth image doesn’t sample the entire 
object it replaces. The sampled area ends with a 
jagged edge when the SPOC rays are tangential to 
the replaced geometry (see Figure 7). When the 
jagged edge is exposed, the reflection’s silhouette 
becomes coarse. One possible solution is to smooth 
the edge as a preprocess, which would preclude dy-
namic scenes. Instead, we alleviate the problem at 
runtime by alpha-blending the intersection sample 
with greater transparency when the SPOC ray be-
comes tangential to the sampled surface.

Undersampling
As with all sample-based methods, the quality of 
the results from nonpinhole depth images is con-
tingent upon adequate sampling. The SPOC sam-
pling rate is uniform and controllable. The graph 
camera sampling rate isn’t uniform: it’s higher 
closer to the initial frustum and lower for the dis-

(a) (b)

Figure 15. Comparing (a) our method to (b) ray tracing. Our method achieves comparable results.
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tant frustums. We constructed the graph camera 
depth image to capture the entrance at a higher 
resolution, where reflections are of the highest 
quality (see Figure 8). Deeper into the maze the 
resolution decreases, leading to aliasing artifacts 
due to the large output-image projection of depth 
image pixels, a problem similar to inadequate 
shadow map resolution. In Figure 16, the teapot 
is at the maze’s upper left (see Figure 8) and thus 
deepest in the graph camera depth image, where 
sampling insufficiency is noticeable.

However, this case is particularly challenging: a 
smooth, highly specular surface reflects a contrast-
ing checker pattern. We use a graph camera depth 
image resolution of 1,920 × 1,175. A brute-force so-
lution is to increase the resolution further. Another 
possibility is to divide the maze into several parts, 
each with its own smaller graph camera depth im-
age. Finally, we could also use a hybrid sample-
based and geometry-based technique that incorpo-
rates “infinite frequency” edges into textures.

Missing Samples
The most visible artifacts in nonpinhole relief tex-
ture mapping are due to samples still missing from 
the relief texture owing to residual occlusions. The 
rear bumper of the car in Figure 4 occludes some 
of the car body in the relief texture, which causes 
the shimmering “rubber band” surface seen in the 
video. One solution is to modify the car model to 
reduce the distance between the bumper and the 
car’s body by pushing the bumper in or thickening 
it. Another solution is to encode the bumper in a 
second relief texture layer.

Performance
We collected the timing information on a 3.4-

GHz, 2-Gbyte Intel Xeon PC with a 768-Mbyte 
Nvidia 8800 Ultra card. We used Nvidia’s Cg 2.0 
shading language with gp4 profiles. An important 
performance factor was the number of steps 
along the ray’s projection, which we analyzed for 
reflections.

We took coarse steps first and performed a 
fuzzy intersection of the coarse ray segment with 
the nonpinhole depth map. If the two endpoints 
projected at unoccupied locations or the coarse ray 
segment clearly didn’t intersect the impostor depth 
map, the coarse segment was trivially rejected. We 
refined coarse segments by performing fine steps 
of 1, 1/2, or 1/4 depth image pixels.

Figure 17 illustrates the number of steps for a 
512 × 512 SPOC depth image, a six-pixel coarse 
step, and a 1/4-pixel fine step. More steps were 
needed when the reflected ray narrowly missed 
the teapot, which caused the fuzzy test to return 
a false positive. The average number of steps was 
48 per output pixel, including both coarse and fine 
steps. For fine steps of 1 and 1/2 pixel, the average 
number of steps was 22 and 31, respectively. These 

Figure 16. Undersampling artifacts on floor reflection. The teapot is 
at the maze’s upper left (see Figure 8) and thus deepest in the graph 
camera depth image, where sampling insufficiency is noticeable.

(a) (b)

Figure 17. Visualization of intersection operations needed for each reflected ray. (a) A diffuse teapot reflected 
in the body of a large teapot. (b) Visualization of the number of intersection steps per pixel. More intense red 
color indicates regions that required more intersection steps.
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numbers don’t account for pixel processor idling 
due to SIMD (single instruction, multiple data) 
processing constraints. Figure 18 shows the reflec-
tion silhouette quality for various fine-step sizes.

Performance depended on the output image 
resolution and fine-step size (see Table 1). We 
measured performance on a typical path (see the 
video) for the scene in Figure 1. We used eight-
sample multisampling antialiasing (8 × MSAA), a 
512 × 512 SPOC depth image, and a coarse step of 
six pixels. For an output resolution of 640 ×480, 
with 8 × MSAA, the average frame rates for SPOC 
depth images of resolution 128 × 128, 256 × 256, 
512 × 512, and 1,024 × 1,024 were 55.8, 36.6, 26.5, 
and 16.1 fps, respectively. For coarse steps of 3, 6, 
9, and 12 texels, the average frame rates were 18.2, 
31.0, 37.2, and 39.8 fps, respectively. The only 
feature thin enough to be affected by the coarser 
steps was the spout’s tip. For a sequence in which 
the SPOC depth image was recomputed on the fly 
(see the video), the average frame rates were 22 fps 
for no antialiasing and 17.3 fps for 16 × MSAA.

Coarse stepping reduced the number of steps for 
the graph camera depth image as well. This is evi-
dent in Figure 19, in which the average number of 
steps decreased from over 155 to 27. The reflection 
of the main entrance, where the graph camera im-
postor had the highest resolution, remained the 
area with the most activity on the teapot. How-
ever, only a few pixels had large step numbers. The 
graph camera impostor was constructed at over 
100 fps. The average, minimum, and maximum 
frame rates for the path that followed the teapot 
through the maze (see the video) were 45.5, 30.0, 

and 105.0 fps without antialiasing, and 26.8, 20.0, 
and 42.0 fps with 8 × MSAA, respectively.

We plan to accelerate the ray-and-depth-image 
intersection computation further by leveraging 
ray coherence. We envision a two-pass approach 
that first renders the reflection at lower resolution 
and then upsamples by interpolation in coherent 
regions. The second pass would compute intersec-
tions only at regions where the lower-resolution 
results weren’t sufficient to reconstruct a quality 
intersection, such as at edge regions.

We constructed nonpinhole relief texture maps 
with an SPOC; our previous discussion of the per-
formance of ray intersection in the context of re-
flections still applies. For Figure 4, the overall per-
formance, including shadow mapping, was 14 fps 
for the 40 cars and 18 fps for the 60 barrels. The 
output resolution was 640 × 480, and the relief 
texture resolution was 512 × 512. For 20 cars, 10 
cars, and 1 car, the performance was 26, 51, and 
219 fps, respectively. All the examples we’ve shown 
used tall relief, which implies long ray projections. 
For scenes with short relief, performance was even 
higher—for example, 46 fps for 160 cars half the 
size of the previous examples (see Figure 20).

We investigated ambient-occlusion performance 
for two quality occlusion sampling settings: regu-
lar (six sampling directions and six steps per direc-
tion) and fine (32 and 20). In both cases, the blur 
kernel width was 21 pixels and the output image 
resolution was 1,024 × 1,024.

The average performance for the dragon scene 
(see Figure 5) was 35 and 16 fps for the regular 
and fine settings, respectively. Figure 5 and the 

Table 1. Frame rates for the scene in Figure 1.

Output resolution

640 × 480 800 × 600 1,024 × 768

Fine-step size (pixels) 1 1/2 1/4 1 1/2 1/4 1 1/2 1/4

Avg. fps 26.5 20.7 15.0 20.9 16.5 11.6 15.2 11.8 8.0

Min. fps 18 14 8 14 10 4 10 8 6

Max. fps 54 46 36 48 15 34 40 34 28

(a) (b) (c)

Figure 18. A silhouette detail with fine steps of (a) 1, (b) 1/2, and (c) 1/4 pixel. Smaller step sizes produce 
better antialiasing effects at object silhouettes, at the cost of increased intersection calculations.
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video used the fine setting. The regular setting 
produced noisier ambient occlusion; this issue 
was orthogonal to the use of the nonpinhole z-
buffer. Rendering the locally illuminated output 
image, rendering the graph camera z-buffer, and 
adding ambient occlusion took 5.9, 16.0, and 6.0 
ms for the regular setting and 5.9, 16.0, and 40.0 
ms for the fine setting, respectively. For the con-
ventional algorithm, rendering the locally illumi-
nated output image and adding the ambient oc-
clusion took 5.9 and 5.9 ms for the regular setting 
and 5.9 and 32.0 ms for the fine setting, respec-
tively. Sampling occlusion in the graph camera 
z-buffer as opposed to the conventional z-buffer 
incurred a 25 percent penalty. Most performance 
loss was due to having to render the graph camera 
z-buffer for the 890K-triangle scene. However, in 
some scenes, updating the graph camera z-buffer 
for every frame was unnecessary.

The nonpinhole z-buffer saw more than what 
was visible in the output image, which greatly 
extended its resiliency to output view changes. 
For example, we could reuse the z-buffer in Figure 
5 if we viewed the dragon only from the front. 
This increased performance to 21 fps for the fine 

setting, approaching the conventional algorithm’s 
26 fps. We could also use a simplified version of the 
model when computing the nonpinhole z-buffer.

(a)

(c)

(b)

(d)

Figure 19. Teapot (a) location and (b) reflection, and the number of steps for visualization (c) without and (d) 
with coarse stepping. Brighter red indicates more steps. Initially taking coarser steps can significantly reduce 
the total number of steps. However, this approach might miss fine details.

Figure 20. A short-relief example. Here, performance was higher than 
for tall relief.
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We’ve shown that nonpinhole depth im-
ages provide efficient ray intersection at 

the small additional cost of traversing a curved—
as opposed to a straight—ray projection. As we 
mentioned before, we leveraged this property to 
render specular reflections, refractions, relief tex-
ture mapping, and ambient occlusion. In prior 
research, we also used depth-discontinuity occlu-
sion cameras to render soft shadows at interactive 
rates.5 (For more on these and other nonpinhole 
cameras, see the “Nonpinhole Cameras” sidebar.) 
The suitability of nonpinholes to so many render-
ing problems argues for the technique’s generality.

Compared to reflection-rendering techniques, 
such as explosion maps,6 that approximate the 
projection of reflected points, our method produces 
multiple projections of the same object at no extra 

cost and handles complex reflectors. Compared to 
color-caching image-based techniques, our method 
supports dynamic scenes and has reduced memory 
requirements. Color-caching techniques excel at 
capturing the appearance of complex real-world 
materials that are glossy but not specular. Our 
method produces better results than environment 
mapping, but at a higher per-pixel cost. Compared 
to ray tracing, our method more easily minifies and 
magnifies reflections by working in the color map 
at different resolution levels, and it achieves fast 
ray-and-geometry intersection. Ray tracing has a 
quality advantage because it doesn’t approximate 
the reflected geometry. Compared to conventional 
relief texture mapping, the nonpinhole relief maps 
bring greater modeling power at the cost of a more 
expensive ray-and-relief-texture intersection.

The overwhelming majority of the images used in com-
puter graphics, visualization, and computer vision are 

rendered or acquired with a pinhole camera: all rays pass 
through a common point, the pinhole. This leads to effi-
cient computational and physical camera implementations 
that compute and acquire images similar to those cap-
tured by the human visual system. However, the pinhole 
requirement is quite restrictive.

Nonpinholes are powerful cameras that can capture 
rays originating at different points in space. Computer 
vision researchers have used them to model complex 
lens and catadioptric systems, including the pushbroom 
camera,1 the two-slit camera,2 and their generalization, 
the general linear camera.3 General linear cameras enable 
a powerful framework for designing multiperspective im-
ages, but rendering is done by ray tracing.4

Research in artistic rendering has used nonpinhole 
cameras to simulate deviations from the conventional 
perspective that artists adopt for aesthetic reasons.5 In 
scene sampling, the most relevant context here, one prior 
nonpinhole camera is the multiple-center-of-projection 
camera, which samples the scene with a vertical slit along 
a user-chosen path, thus avoiding redundancy and offer-
ing sampling flexibility.6 However, construction requires 
rendering the scene for each position along the path. In 
cel animation, multiperspective panoramas capture all 3D 
scene samples seen along a camera path. This lets anima-
tors simulate camera motion by sliding a frame over the 
panorama, but the view is confined to the path, and the 
scene must be static.7

Occlusion cameras aim to address disocclusion errors. 
Given a reference view and a 3D scene, occlusion cameras 
build a single-layer image that stores samples visible from the 
reference viewpoint and from nearby points. They include 
the single-pole occlusion camera we discuss in the main 

article, the depth-discontinuity occlusion camera (DDOC),8 
and the epipolar occlusion camera (EOC).9 The DDOC speci-
fies the distortion through a map; the added flexibility comes 
at the cost of increased construction time. The EOC captures 
all the samples visible as the viewpoint translates between 
two given points. It effectively generalizes a planar pinhole 
camera’s viewpoint to a viewsegment. However, it supports 
translation only along a single direction.
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Besides the directions for future research that 
we already sketched, we’ll investigate integrating 
our nonpinhole rendering framework into popular 
digital 3D content creation tools. Our research 
argues for the benefits and practicality of camera 
models that abandon the pinhole constraint. 
Nonpinhole cameras can provide powerful yet 
inexpensive approximations for many applications 
in graphics and beyond.�
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