
Interactive Caustics Using Local Precomputed Irradiance

Chris Wyman Charles Hansen Peter Shirley
School of Computing, The University of Utah

Salt Lake City, Utah, USA

Abstract

Bright patterns of light focused via reflective or refrac-
tive objects onto matte surfaces are called “caustics”. We
present a method for rendering dynamic scenes with moving
caustics at interactive rates. This technique requires some
simplifying assumptions about caustic behavior allowing us
to consider it a local spatial property which we sample in a
pre-processing stage. Storing the caustic locally limits caus-
tic rendering to a simple lookup. We examine a number of
ways to represent this data, allowing us to trade between ac-
curacy, storage, run time, and precomputation time.

1. Introduction

Daily life immerses us in environments rich in illumina-
tion we wish to capture in our renderings. Unfortunately
rendering complex illumination often incurs a significant
computational cost. Since many applications require inter-
active speeds, costly algorithms for global illumination are
often infeasible.

Many applications could benefit from fast and simple
algorithms for global illumination. Such algorithms exist
and are used in various fields ranging from research to
entertainment. These techniques vary in physical accuracy
from exact radiosity solutions to fabricated lightmaps used
to texture map surfaces in many of today’s games. These
methods typically suffer from a common computer graph-
ics problem—poor scaling with scene complexity. Often
techniques which run quickly on simple scenes bog down
when used on a complex environment. Generally, much ef-
fort spent is computing illumination with only a minor im-
pact on the image and negligible perceptual impact. In fact,
while global illumination provides humans perceptual cues
as to relative object locations, accuracy is not always impor-
tant [12, 17].

While global illumination appears to have a signif-
icant impact upon how humans view interactions be-
tween objects, computing a full global illumination
solution is often unnecessary. For example, sunlight re-

Figure 1. This scene runs at 2.3 fps with dy-
namic caustics and 2.6 fps without caustics,
using a raytracer running on 30 CPUs for ren-
dering.

flected off a wooden pencil onto the wall across the
room contributes little to a scene and can safely be ig-
nored. While some researchers [26] have looked into
simplifying the environment to reduce unnecessary compu-
tations, questions remain as to what level of simplification
compromises the perceived quality of global illumina-
tion.

In this paper, we examine the focusing of light caused by
reflective and refractive surfaces. This focusing, known as a
“caustic,” potentially affects the entire environment, yet in
most cases appears in a relatively localized space around a
specular object. One might see a caustic from a glass fig-
urine on a table, for example, or the caustic from a mirror
on an adjacent wall.

Our technique samples the caustic near the focusing ob-
ject. This allows us to reduce caustic rendering from a
global problem to a localized property which can be com-
puted with a simple lookup. We perform this lookup at in-
teractive framerates, even as objects and lights move. How-
ever, sampling takes significant precomputation and mem-



ory and accurate caustics are limited to the sampled region.
The rest of the paper is divided as follows. Section 2, out-

lines previous work in computing and speeding up global il-
lumination. Section 3 discusses the behavior of caustics and
shows how we deal with their complexities. Section 4 dis-
cusses various ways to sample a caustic and the tradeoffs in-
volved and section 5 discusses some issues involved in ren-
dering a caustic from sampled data. Section 6 presents our
results. Finally, Section 7 presents our discussion, conclu-
sions, and future work.

2. Background

As global illumination is important for many scenes, re-
searchers have proposed many illumination models. Many
existing techniques focus on diffuse interactions or do not
handle all specular effects. We focus our attention in this
section on techniques which generate caustics and interac-
tive techniques similar to ours.

Accurate caustics have been generated semi-analytically
for smooth surfaces [20], albeit at a cost too high for inter-
activity. Researchers have also investigated accurate inter-
polation between specular rays [2, 5], but these techniques
have not yet yielded fast sampling-based methods for accu-
rate caustic generation.

Pathtracing [16] generates beautiful global illumination
renderings, but accuracy comes at extreme computational
cost. Numerous researchers have looked into speeding up
pathtracing and raytracing [18, 24, 29, 31]. These methods
typically rely on storing previously computed samples and
reprojecting them for a new viewpoint, sampling the places
where errors are greatest. Unfortunately, in the case of mov-
ing caustics, the errors will be highest in the areas most ex-
pensive to recompute—the caustic.

Sending rays from the light has been successfully ap-
plied to generate caustics [1]. Many researchers have since
used this technique, and it has been extended to include
non-diffuse surfaces (e.g., photon mapping [14, 15]). This
gives excellent caustics with much higher efficiency than
pathtracing. While the results are view-independent, they
require a reasonably expensive preprocess which must be
repeated after moving a light or an object, and even re-
cent work implementing photon mapping in hardware [25]
is still far from interactive. Combinations of photon shoot-
ing and pathtracing have been examined [30]. By utilizing
significant CPU resources, they could interactively render
scenes with global illumination, including simple caustics.
Such techniques can only shoot a limited number of pho-
tons per frame. Since higher quality caustics and caustics
for complex objects require significant numbers of photons,
such techniques cannot always quickly recompute crisp
looking caustics in dynamic scenes.

A number of extensions to the basic radiosity [8] tech-
nique allow specular effects in static scenes [13, 19, 27].
Stochastic approaches to radiosity [3, 21] can be adapted to
generate caustics, though like in pathtracing, reducing vari-
ance can be expensive. A combination of hierarchical ra-
diosity and particle tracing [9] proved able to render spec-
ular effects, like caustics, interactively for simple objects.
However, like most particle tracing techniques rendering
takes longer for more complex objects.

Using volume data structures to encode lighting informa-
tion about a scene has been accomplished in the context of
static scenes for diffuse [26] and more general reflectance
functions [6]. Such volume data structures can illuminate
dynamic objects provided they are sufficiently small to not
require updates of the volume data structure [10]. However,
none of these methods allow a movable specular object to
affect the lighting of the scene itself.

Graphics hardware has been used to generate accurate
caustics [7, 22]. Recent work [32] has allowed hardware
techniques to run interactively. However, hardware tech-
niques limit the type of objects used and multiple passes
compound slowdowns from increasing scene complexity.
Sampling based hardware approaches [32] only handle fo-
cusing from a single specular interaction. Precomputed ra-
diance transfer functions allow graphics hardware to ren-
der global illumination effects in real-time [28]. While this
technique can render caustics, the results are highly blurred
due to use of low-order spherical harmonics and caustics are
only cast on predefined objects.

Our technique precomputes all the data required for arbi-
trarily moving caustics in advance, so a simple table lookup
suffices even for complex specular objects. No photon trac-
ing is required between frames, so caustics computations
are not dependent on object complexity.

3. Caustics

In this section we describe the caustic behavior and
discuss assumptions and simplifications necessary for our
technique. Our goal was to develop a method that locally
approximates a caustic. We wanted our technique to require
little or no recomputation from frame to frame, even when
the objects and lights move.

3.1. Caustic Behavior

Caustics are caused by the focusing of light due to re-
flection or refraction off specular surfaces [23]. Some ex-
amples of caustics in daily life include sunlight reflected off
a watch onto a car ceiling, the cardioid shape at the bot-
tom of a coffee mug (Figure 2), and the focusing of light
through a magnifying glass.



Figure 2. A photo of a real world caustic.

~Np ~Dp

O

p Surface S

~L

Figure 3. We want to compute the caustic
from object O at point p on surface S. This
caustic function has 8 dimensions, 3 each
from ~Dp and ~L, and two from the orientation
~Np of the receiving surface relative to ~Dp.

While caustics are common, few people know exactly
how they should look. For example, one would expect a
glass figure to cast a caustic onto a table, but blurred,
slightly offset, or even missing details may go unnoticed.

Flat surfaces, like mirrors, reflect light without focusing
it. However any concave reflector focuses light into bright
lines or points. Technically, only curved surfaces cause
caustics, but in this paper, we adopt the common graphics
usage and refer to any specularly reflected or refracted light
as a caustic, as we want to handle both effects.

Consider a transmissive object fixed relative to a light-
source, as in Figure 3. The caustic’s intensity at point p
changes based upon the position of p relative to the object
and the normal ~Np of the surface at p. For fixed light and
object positions, the caustic can be considered a 5D func-
tion. Allowing the light (or equivalently the object O) to
move changes the caustic into a 8D function, by allowing
the vector ~L to vary.

Render caustics interactively involves quickly evaluating
this 8D caustic intensity function. Unfortunately, analytical
descriptions of an arbitrary object’s caustic cannot be ob-
tained using current methods, so we fall back to numeri-
cally approximating this function.

3.2. Simplifying the Problem

Our simplifications are based on the following observa-
tions:

• The direction of incoming light often has greater im-
pact on the visible caustic than distance to the light.

• Lights located relatively far away generate caustics
similar to those of lights located infinitely far away.

• Most objects that focus light are relatively far away
from the light. The most prevalent exception, mirrors
in light fixtures, can usually be treated as part of the
lightsource (e.g. Canned Lightsources [11]).

• The most complex caustic behavior usually occurs in
regions near the focusing object.

Using these observations, we can make some assumptions
to simplify the problem. Combining the first two observa-
tions, we assume that the distance to the light source can be
ignored. Using directional light sources reduces the dimen-
sionality of the problem by one.

We further assume that some finite volume exists around
a reflective or refractive surface in which its caustic con-
tributes significantly to the illumination of other objects.
This allows us to sample ~Dp over a finite region. Outside
this region, our caustic is based upon samples from the
outer region of our sampling volume. Alternately, outside
the sampling region caustic contributions could be faded.
Note that considering the caustic a local object property lim-
its us to casting caustics onto diffuse surfaces to avoid spec-
ularly reflecting the precomputed caustic.

Finally, we assume we can precompute the caustic at p
for some known surface orientation ~Npfixed

. We then ap-
proximate the caustic for an arbitrary orientation ~Np by
multiplying the precomputed intensity by ~Np · ~Npfixed

. We
set ~Npfixed

= −D̂p = −~Dp/‖~Dp‖ at each sample p. Con-
ceptually, this method treats all caustic light from O as com-
ing from a point light at O’s center and computes the caus-
tic intensity at p using a cosine falloff based on ~Np · −D̂p.

Using these assumptions, we can sample a simplified 5D
caustic function. These five dimensions are x, y, z, φ, and
θ, where ~Dp = (x, y, z), and φ and θ correspond to the di-
rection of L̂.

4. Caustic Sampling

This section outlines the approaches we have examined
for sampling and representing the five dimensional caustic
function discussed above. Since our caustics are local prop-
erties of an object, sampling must be independently per-
formed on each object which focuses light. We discuss the
sampling of the volume over x, y, and z separately from the
sampling of incoming light directions φ and θ.



L̂i
L̂i

Figure 4. We sampled space either on a uni-
form grid or a set of concentric shells.

4.1. Sampling the Light

For each caustic object, we need to store information
about the caustic as the light moves relative to the object.
Since we have assumed directional lighting, sampling this
lighting is equivalent to sampling directions (φ, θ) over a
unit sphere.

We found that sampling φ and θ in a fixed, uniform
or near-uniform, pattern generally works as well as adap-
tively sampling. Each linear change in φ or θ corresponds
to varying non-linear changes in the caustic intensity over
the volume (x, y, z). Because incoming light often bounces
around the object many times, few incoming directions L̂

have “simpler” caustic behavior than others. When we adap-
tively sampled the sphere, it converged to a relatively uni-
form sampling.

Currently, we sample φ and θ on a geodesic. Specifically,
we subdivide an icosahedron between 3 and 6 times and
project the vertices to the unit sphere. We either sample at
the vertices or centers of the subdivided triangles. This pro-
vides a nearly uniform sampling over the sphere. We use
this method simply because we need not recompute all sam-
ples when we subdivide for a denser sampling.

4.2. Sampling Space

Given a light sample L̂i, we need to sample the volume
around object O. If the object has a bounding volume of ra-
dius r, we found in our tests we needed to sample a region
with radius ≈ 3r. However, this varies depending on where
focal points of the object lie.

We have sampled this region using two different struc-
tures, a uniform grid and a set of concentric shells subdi-
vided as a geodesic (see Figure 4). After subdividing the
volume, we sample the caustic function using the follow-
ing algorithm. For each light sample L̂i, we shoot photons
from the directional lightsource towards the object O. Once
a photon specularly bounces, it contributes to all the new
cells it passes though (the dashed lines in Figure 4).

A photon’s contribution to a cell is computed as if it hit a
surface at the sample point pS with surface normal in the di-

rection of Ocenter − pS. At each sample point pS we want
to store just the caustic intensity (i.e. we do not want to
store direct lighting), so we ignore contributions from non-
reflected and non-refracted photons. The result is a grid stor-
ing approximate irradiance at each cell’s center (similar to
the Irradiance Volume [10]), with the caveat that only irra-
diance due to specularly reflected light is stored.

Storing data on a grid has the advantage of easy im-
plementation and fast lookups. However, a rectangular grid
structure does not correspond well to caustic data because
intensity data changes in a generally radial fashion. This
means much space is wasted storing data which changes
slowly and not enough is concentrated in regions where the
caustic changes quickly.

Storing data on concentric shells allows non-uniform
placement of the shells to densely sample the data radially
in regions where the caustic varies significantly. Using this
allows us to reduce the sampling of one dimension of the
volume by up to a factor of 5, either reducing memory us-
age or allowing a finer sampling in other dimensions. We
avoid the difficulty of indexing into a geodesic by using a
table lookup.

4.3. Data Representation

One of the major problems with sampling a high dimen-
sional function, such as the caustic intensity, is the large
storage requirement. Using such data in interactive applica-
tions can be difficult if significant portions must remain in
memory. We have examined a number of methods to repre-
sent this data which reduce the memory overhead. Each ap-
proach has its advantages and disadvantages.

Our first implementation stores the complete set of sam-
pled data, both on disk and in memory. Obviously, this re-
quires a machine with lots of memory. For instance, naively
storing all sampled data for the ring images (see Figure 11),
requires around 1 GB of memory. Our data is stored in col-
ors of three bytes each, one byte for each red, green, and
blue channels. The advantage of this technique is easy im-
plementation and fast lookups, leading to faster framerates
when data can be completely stored in main memory. Since
caustics typically have a large dynamic range, we cannot
use these bytes to store the usual values in the range [0, 1].
Our examples require values in the [0, 3] range. Using 8-
bit values in this way obviously reduces precision, but since
we interpolate to get the irradiance at each point we have
not noticed a reduction in quality.

Using a multi-resolution approach helps save memory.
We found multi-resolution techniques could reduce mem-
ory usage by up to a factor of 10 with equivalent quality
results. The tradeoff is that lookups take longer due to the
more expensive data traversal routines. This results in mod-



erately reduced framerates. Additionally, multi-resolution
approaches may not always reduce storage space.

We also examined using spherical harmonics to com-
press the sampled data. For each cell in the volume, instead
of storing a color for each light sample L̂i, we store spheri-
cal harmonic coefficients approximating the irradiance for
the entire sphere of incoming directions. Alternately, we
tried storing one set of spherical harmonic coefficients to
represent each of the concentric shells for a given light sam-
ple. One main advantage of spherical harmonics is that a
large amount of data can be approximated by a few coef-
ficients. The major problem with this approach, however,
is that spherical harmonics eliminate most of the high fre-
quency information in a caustic. We believe such sharp fea-
tures are important to caustic rendering. Increasing the or-
der of the spherical harmonic approximation significantly
increases precomputation time as well as the number of co-
efficients required. As the number of coefficients increases,
rendering time slows as well.

5. Caustic Rendering

After sampling our caustic function, we use a raytracer to
interactively render the scene. Note that this technique is not
limited to raytracers. We simply use a raytracer because it
runs interactively on a large shared-memory machine, eas-
ily allowing us to access large amounts of memory. Any
renderer which can access the necessary data quickly and
perform per-pixel operations could use our sampled data to
compute caustic intensity.

5.1. Rendering Algorithm

Raytracing the scene proceeds normally until the deter-
mination of the color at a diffuse surface. At these surfaces,
instead of just looking for direct illumination, we perform
lookups into the sampled data to determine if they are illu-
minated by a caustic. This process can be described algo-
rithmically as follows:

1. Determine the direction L̂ from the center of the ob-
ject O to the light. Locate the nearest light sample L̂i

(where L̂ · L̂i is maximal). This volume stores the clos-
est approximation to the caustic from the current light
position. This step should be done only once per frame,
since it is independent of the intersection point p.

2. At each intersection point p, find p’s location in the
volume sampled around O and look up the caustic con-
tribution. Add this result to the direct lighting com-
puted by the renderer.

βj

βi

βk

L̂k L̂

Light

L̂i

~Lj

O

Figure 5. L̂ intersects the spherical triangle
formed by L̂i, L̂j, and L̂k.

Figure 6. Ghosting happens when the caus-
tic changes significantly between neighbor-
ing light samples L̂i, L̂j, and L̂k. Images (left)
without caustics, (center) with ghost caus-
tics, and (right) a correct caustic.

5.2. Issues Rendering Caustic Data

Unfortunately, using a single light sample L̂i to ren-
der the caustic causes temporal coherence issues as objects
move. This is due to differences in the caustic from one light
sample to the next.The popping can be reduced by combin-
ing the caustic from multiple light samples L̂i, L̂j, and L̂k

(where L̂ · L̂i ≥ L̂ · L̂j ≥ L̂ · L̂k ≥ L̂ · L̂m,∀m /∈ {i, j, k}).
L̂i, L̂j, and L̂k form the three vertices of a spherical trian-
gle on the unit sphere which includes L̂ (see Figure 5).

Combining three light samples using barycentric coordi-
nates [4] eliminates popping between caustic samples but
introduces a new problem—ghosting (see Figure 6). Ghost-
ing happens because object O’s caustic can differ signifi-
cantly between neighboring light samples, so blending data
from L̂i, L̂j, and L̂k results in three separate faint caustics.
Unfortunately, the best way to eliminate ghosting is to sam-



Sampled
Light

p

L̂
L̂i

Light

~Dp
p′

i

~Dp′

i

βi

Figure 7. Find the cell to use in the average by
rotating ~Dp around the axis ~Ri (which points
into the page at Ocenter) by angle βi.

ple the caustic for more light directions. This significantly
increases memory consumption.

Below, we describe a technique which we found helps
reduce ghosting for relatively smooth objects. This algo-
rithm replaces step 2 from the rendering algorithm de-
scribed above:

A. Compute the vector ~Dp from Ocenter to p.

B. Find the barycentric coordinates of L̂ in the spherical
triangle formed by L̂i, L̂j, and L̂k. This gives the rela-
tive contributions from each light sample (Figure 5).

C. Compute the angles βi, βj , and βk between L̂ and the
three nearest sampled light directions L̂i, L̂j, and L̂k.

D. Calculate rotation axes ~Ri, ~Rj, and ~Rk by taking the
cross product between ~L and ~Li, ~Lj, and ~Lk, respec-
tively.

E. Rotate vector ~Dp around the axes ~Ri by angle βi to
find a new vector ~Dp′

i
. Similarly find ~Dp′

j
and ~Dp′

k
by

rotating around ~Rj and ~Rk by angles βj and βk (Fig-
ure 7).

F. Find points p′

i, p
′

j, and p′

k. Where p′

i = Ocenter + ~Dp′

i
.

G. Perform caustic lookups as if p′

i, p
′

j, and p′

k were the
intersection points (instead of p). Weight the contribu-
tions from these points based on the barycentric coor-
dinates computed in step B.

The process performs an interpolation between samples.
Unfortunately, such an interpolation is not generally valid,
as it assumes the caustic changes linearly in space for a lin-
ear change in light direction. We found for relatively smooth
objects, like the sphere and bunny, such “interpolation” gen-
erally allows us to use fewer light samples. For objects such
as the cube and prism which have sharp angles, we found
that this approach does not significantly reduce ghosting.

Sphere Cube Prism Ring Building Bunny
Grid Caustics (fps) 15.2 12.1 12.7 9.3 1.94 2.16
Shell Caustics (fps) 17.3 12.6 13.2 9.5 2.01 2.30
Multi-Resolution 15.0 10.8 11.0 8.8 1.90 2.25

Caustics (fps)
5th Ord. Sph. Harm. 8.1 6.1 6.5 5.2 1.48 1.80

Caustics (fps)
No Caustics (fps) 26.9 20.2 20.3 12.9 2.29 2.55

Shoot Photons
(per sample) 1.7 2.4 2.0 1.3 4.5 25.0

(sec) on 1 CPU

Table 1. Framerates are for thirty 400 MHz
R12000 processors rendering a 3602 window.
Times for shooting photons are for a single
400 MHz R12000 processor.

When using spherical harmonic coefficients, which es-
sentially filter over the sampled light directions, we can
avoid this rendering process and instead render using the
approach outlined in Sloan et al. [28]. The downside to this
approach is blurred caustics.

6. Results

We implemented our algorithm on an interactive paral-
lel raytracer running on an SGI Origin 3800 with thirty-
two 400 MHz R12000 processors. This is a shared mem-
ory machine which easily holds our entire scene and caus-
tic datasets in main memory. However, our approach is not
limited to such applications. Any renderer which has per-
pixel lighting control could implement our technique given
enough memory. Existing systems (e.g. [9, 24, 29, 31, 30])
could easily incorporate our method to avoid the cost of
reshooting photons each frame.

Table 1 contains timings for the images generated for
Figures 1, 8, and 9. We incur a 10–45% speed penalty for
displaying caustics, depending on the relative costs of the
caustic lookups to the raytracing costs of the scene. The
cost of our photon shooting preprocess ranges from 1.3 to
25 seconds per light sample using a single CPU. Shooting
photons for a photon map takes a similar amount of time,
though additional overhead is needed to create the required
kd-tree. Framerates are for a 360 x 360 window running on
thirty processors.

Figure 8 compares a photon map with our technique us-
ing both the grid and concentric shell storage techniques.
The comparisons are between grids and shells using roughly
the same memory. We show data compressed using 5th
and 15th order spherical harmonics. The advantages of the
spherical harmonic representation are the ability to use area
lights (see Figure 10) and its high temporal coherence and
low memory consumption. For comparison, these 5th order
representations use nearly 10 MB memory, about as much
as the uncompressed data used for Figure 11a. Since the
number of coefficients increases quadratically with order,



Figure 8. From left to right: Images generated with a photon map, our concentric shell approach, our
grid technique, and 5th and 15th order spherical harmonic representations.

Figure 9. Caustics can also be dynamically
cast on complex terrain.

computation costs quickly become the bottleneck. All our
scenes run at less than 1 frame per second with 15th order
spherical harmonics.

Figure 11 illustrates the effect of sampling density on
memory consumption and caustic quality. For relatively
smooth object, like the bunny (see Figure 1), we used 162
light samples. For objects where our rotational alignment

Figure 10. The caustic of a prism in St. Peter’s
cathedral using 5th order spherical harmon-
ics. Note there are no shadows in this image.

technique from Section 5.2 does not work well (like the
cube and prism), we needed up to 2500 light samples. Note
that number of light samples does not affect framerate, as-
suming the data can all fit into memory.

Obviously, with symmetric objects one need not sample



Figure 11. Sharper caustics come at the expense of denser sampling. The images shown use 5.7,
22.5, 90.1, 360, and 1440 kB of memory per light sample using the concentric shell representation.
Similar quality with the multiresolution approach requires 4.8, 12.6, 29.5, 70.4, and 179 kB of memory
per light sample.

the entire sphere of incoming light directions. For a sphere,
a single sample suffices. For the metallic ring, we found be-
tween 50 and 100 light samples are sufficient for good tem-
poral coherence. Many common objects have symmetrical
properties which could be used to simplify sampling.

7. Conclusions

We have presented a novel technique for rendering ap-
proximate caustics interactively by localizing the problem
to the vicinity of the focusing object. This approach avoids
the recurring cost of photon shooting which existing meth-
ods require to generate dynamic caustics. Because parti-
cle tracing in not necessary between frames, this technique
could be applied to other interactive systems that cannot tra-
ditionally perform such computations (e.g. hardware based
renderers). Additionally, the rendering costs of our method
are independent of object complex. We examined a num-
ber of ways of sampling the data and representing the sam-
ples in memory. Since our method generates caustics using
table lookups, memory becomes the bottleneck.

We have found that storing a highly sampled caustic
function in memory produces the best looking results. Un-
fortunately, the memory requirements make the technique
difficult to use unless object symmetries or other simpli-
fying conditions exist. Multi-resolution approaches can sig-
nificantly reduce memory overhead by storing densely sam-
pled data only where necessary. In exchange lookups are
more costly.

Storing data using spherical harmonics generally blurs
caustics extensively. We believe that the results look un-
convincing, though memory requirements are modest
enough to allow implementation on current graphics hard-
ware. Higher order approximations improve results at
the expense of additional coefficients. We plan on exam-
ining other bases, such as spherical wavelets, to see if

they result in sharper caustics with similar memory sav-
ings.

Scenes that lend themselves well to our technique in-
clude outdoors scenes where the sun effectively acts as a
constant directional lightsource. Such a scene requires a sin-
gle light sample. Leveraging object symmetries also can re-
duce some of the memory burden. Many common objects
have such symmetries, so our sampling techniques may be
feasible for such objects.

Our work has a number of limitations, including:

• Expensive memory requirements for general environ-
ments when the entire sampled dataset must be avail-
able.

• Poor realignment of neighboring light samples causes
ghosting when φ and θ are not sampled densely
enough.

• Area light sources are not handled without spherical
harmonics. Since the shape of a light can significantly
affect the caustics, this problem needs to be addressed.

• Our assumptions rule out using this method for scenes
with reflective or refractive objects near the lights.

We believe that the alignment of light samples presents
a serious problem, particularly for objects with large planar
surfaces. We plan on examining ways of representing the
entire 5D dataset instead of simply considering the func-
tion as a 2D array of 3D volumes. Such a representation
may allow us to perform a true interpolation between light
samples. Such interpolation would eliminate the need for a
dense sampling of φ − θ space.

Current graphics hardware has extensive pixel shader
hardware which could apply our sampled data in interac-
tive OpenGL or DirectX applications. We plan on examin-
ing the details involved with such an approach.

We believe that global illumination gives important in-
formation to users of interactive systems and cannot be ig-



nored. Our results indicate that viable techniques exist for
including specular effects in addition to diffuse global illu-
mination in these applications.

References

[1] J. Arvo. Backward ray tracing. Developments in Ray Trac-
ing, pages 259–263, 1986. ACM Siggraph ’86 Course Notes.

[2] K. Bala, J. Dorsey, and S. Teller. Radiance interpolants for
accelerated bounded-error ray tracing. ACM Transactions on
Graphics, 18(3):100–130, August 1999.

[3] P. Bekaert. Hierarchical and stochastic algorithms for ra-
diosity. PhD thesis, Department of Computer Science,
Kaltholieke Universiteit Leuven, 1999.

[4] B. Cabral, M. Olano, and P. Nemec. Reflection space image
based rendering. In Proceedings of SIGGRAPH, pages 165–
170, 1999.

[5] M. Chen and J. Arvo. Theory and application of spec-
ular path perturbation. ACM Transactions on Graphics,
19(4):246–278, October 2000.

[6] K. Chiu, K. Zimmerman, and P. Shirley. The light volume:
an aid to rendering complex environments. In Eurographics
Rendering Workshop, pages 1–10, 1995.

[7] P. J. Diefenbach and N. I. Badler. Multi-pass pipeline ren-
dering: Realism for dynamic environments. In ACM Sympo-
sium on Interactive 3D Graphics, pages 59–70, 1997.

[8] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Bat-
taile. Modelling the interaction of light between diffuse sur-
faces. In Proceedings of SIGGRAPH, pages 213–222, 1984.

[9] X. Granier, G. Drettakis, and B. Walter. Fast global illumina-
tion including specular effects. In Eurographics Rendering
Workshop, pages 47–58, 2000.

[10] G. Greger, P. Shirley, P. M. Hubbard, and D. P. Greenberg.
The irradiance volume. IEEE Computer Graphics & Appli-
cations, 18(2):32–43, March-April 1998.

[11] W. Heidrich, J. Kautz, P. Slusallek, and H.-P. Seidel. Canned
lightsources. In Eurographics Rendering Workshop, pages
293–300, 1998.

[12] H. Hu, A. Gooch, W. Thompson, B. Smits, J. Rieser, and
P. Shirley. Visual cues for imminent object contact in real-
istic virtual environments. In Proceedings of Visualization,
pages 127–136, 2000.

[13] D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radios-
ity method for non-diffuse environments. In Proceedings of
SIGGRAPH, pages 133–142, 1986.

[14] H. W. Jensen. Importance driven path tracing using the pho-
ton map. In Eurographics Rendering Workshop, pages 326–
335, 1995.

[15] H. W. Jensen. Global illumination using photon maps. In
Eurographics Rendering Workshop, pages 21–30, 1996.

[16] J. T. Kajiya. The rendering equation. In Proceedings of SIG-
GRAPH, pages 143–150, 1986.

[17] D. Kersten, D. C. Knill, P. Mamassian, and I. Bulthoff. Illu-
sory motion from shadows. Nature, 279(6560):31, 1996.

[18] G. W. Larson and M. Simmons. The holodeck ray cache:
An interactive rendering system for global illumination in
non-diffuse environments. ACM Transactions on Graphics,
18(4):361–368, October 1999.

[19] T. J. V. Malley. A shading method for computer gener-
ated images. Master’s thesis, Computer Science Department,
University of Utah, June 1988.

[20] D. P. Mitchell and P. Hanrahan. Illumination from curved
reflectors. In Proceedings of SIGGRAPH, pages 283–291,
1992.

[21] L. Neumann, M. Feda, M. Kopp, and W. Purgathofer. A new
stochastic radiosity method for highly complex scenes. In
Eurographics Rendering Workshop, pages 201–213, 1994.

[22] T. Nishita and E. Nakamae. Method of displaying optical ef-
fects within water using accumulation buffer. In Proceedings
of SIGGRAPH, pages 373–381, 1994.

[23] J. F. Nye. Natural Focusing and Fine Structure of Light. In-
stitute of Physics Publishing, Bristol, 1999.

[24] S. Parker, W. Martin, P.-P. Sloan, P. Shirley, B. Smits, and
C. Hansen. Interactive ray tracing. In ACM Symposium on
Interactive 3D Graphics, pages 119–126, 1999.

[25] T. Purcell, C. Donner, M. Cammarano, H. W. Jensen,
and P. Hanrahan. Photon mapping on programmable
graphics hardware. In Proceedings of the ACM SIOG-
GRAPH/EUROGRAPHICS Conference on Graphics Hard-
ware, pages 41–50, 2003.

[26] H. Rushmeier, C. Patterson, and A. Veerasamy. Geometric
simplification for indirect illumination calculations. In Pro-
ceedings of Graphics Interface, pages 227–236, 1993.

[27] H. Rushmeier and K. Torrance. Extending the radiosity
method to include specularly reflecting and translucent ma-
terials. ACM Transactions on Graphics, 9(1):1–27, January
1990.

[28] P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency
lighting environments. ACM Transactions of Graphics,
21(4):527–536, July 2002.

[29] P. Tole, F. Pellacini, B. Walter, and D. P. Greenberg. Inter-
active global illumination in dynamic scenes. ACM Transac-
tions of Graphics, 21(4):537–546, July 2002.

[30] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek. In-
teractive global illumination using fast ray tracing. In Euro-
graphics Rendering Workshop, pages 15–24, 2002.

[31] B. Walter, G. Drettakis, and S. Parker. Interactive rendering
using the render cache. In Eurographics Rendering Work-
shop, pages 19–30, Granada, Spain, June 1999. Springer
Wein / Eurographics.

[32] M. Wand and W. Straßer. Real-time caustics. Computer
Graphics Forum, 22(3):611–620, 2003.


