
Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

State of the Art:

Interactive Global Illumination

Chris Wyman

Department of Computer Science

University of Iowa

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

What Is Global Illumination?

• Lighting affected by global scene geometry

• Light paths involving more that one bounce

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Why Is It Hard?

• Why is GI hard with programmable shading?

– Standard pipe processes prims one by one

• Difficult to use global info when you don’t have it

– Restricted mostly to precomputed techniques

• R & D has allowed relatively amazing quality

• By definition limits interactivity & scene dynamism

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Why Is It Hard?

• Why is GI hard, generally?

– Many surfaces illuminate each other

• Difficult to minimize bandwidth costs & cache thrashing

• Accumulate light from many surfaces over hemisphere

– Key problem: computing visibility

• Any surface could occlude any other

• Difficult to identify a minimal set of occluders to test

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Why Should It Be “Easy”?

• It mostly changes slowly, smoothly

– Over a wide range of material and light types

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Why Should It Be “Easy”?

• We have a hard time judging visual quality

[Yu et al 09][Ramanarayanan et al 07]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Ways To Approach Problem?

• Precompute approximate lighting

– Standard programmable shading technique

• Simplify lighting equations

– Reduce computational complexity

• Simplify geometry or lights

– Reduce number of computations

• Reuse data to amortize computations

– Interpolate between “good enough” samples

• Brute force

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Ways To Approach Problem?

• Precompute approximate lighting

– Widely used; plenty of information available; references in notes

– Going to very briefly review for completeness

• Simplify lighting equations

• Simplify geometry or lights

• Reuse data to amortize computations

• Brute force

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Precomputation Schemes

• Texture atlas

– Param triangles in texture space

– Precompute light @ each texel

– At run time, lookup results

– Pros: easy, cheap, any type of

lighting can be baked

– Cons: aliasing, static

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Precomputation Schemes

• Vertex baking

– Precompute lighting @ each vertex

– Runtime interpolate from nearby verts

– Pros: Easy, cheap, less storage

– Cons: Static, linear interp. issues, limited

lighting frequency

– Recent work smooths gradients using least

squares optimization & regularization

[Kavan et al. 11]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Precomputation Schemes

• Precomputed radiance transfer

– Precompute and project information

• Including: illumination, visibility, reflectance

• To some spherical basis (SH, spherical wavelets)

– Leverage fast operations in new basis

– Pros: Allows limited dynamism, useful in

many other approaches, many extensions

– Cons: More storage, typically low frequency

a SH basis a spherical

wavelet

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Ways To Approach Problem?

• Precompute approximate lighting

• Simplify lighting equations

– There are many ways to simplify the rendering equation:

• Simplify geometry or lights

• Reuse data to amortize computations

• Brute force

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Simplification Schemes

• Ambient occlusion

– Assumes incident light uniform, white

– Just consider visibility

– Modulate with direct light

• Or an indirect approx without visibility

– Pro: Cheaper than GI, surprisingly good, can compute in multiple

spaces (screen space, world, object, tangent)

– Cons: Still not cheap to do well, not suited for high freq. lighting

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Methods for Ambient Occlusion

Surface discretization

[Bunnell 05]

SS Obscurance Est.

[McGuire 11]
Occlusion Volumes

[McGuire 10]

Vol. Obscurance

[Loos10]

SSAO

[Mittring 07]

Horizon-Based SSAO

[Bavoil 08]
Volumetric AO

[Szirmay-Kalos 09]

Multi Layer, Multi Res

[Bavoil 09]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Simplification Schemes

• Screen space directional occl.

– Samples nearby pixels in screen space

– Considers reflectance in direction

• Unlike AO, illumination may be non-uniform

– Add indirect bounce with second pass

– Pro: Adds direction varying color bleeding over short range

– Cons: Layer artifacts (as SSAO), still low freq., 30% overhead

for subtle effect

[Ritschel et al. 09]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Ways To Approach Problem?

• Precompute approximate lighting

• Simplify lighting equations

• Simplify geometry or lights

– Reduces number of elements we need to query (or compute solutions for)

• Reuse data to amortize computations

• Brute force

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Geometry Simplification

• Radiosity

– Prototypical geometrical simplification

– Represent scene as a collection of patches

– Compute patch transfer via form factors

– Underlies many, many recent interactive techniques

• Even if not used explicitly

• Not typically used as proposed in 1980’s and 1990’s literature

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Geometry Simplification

• Voxelize / Rasterize Geometry

– Avoid using all tiny little polygons

– Geometric details less important after

reflection

– Can use sparse voxel representations as

acceleration structure

• Some recent voxel representations:

[Crassin 09], [Forest 09], [Schwarz 10]

– Use ray-voxel intersection to query lighting

[Crassin et al. 11]

[Thiedemann et al. 11]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Light Simplification

• Instant Radiosity

– Sample lights as virtual point lights (VPLs)

– Emit photons from VPLs

• Photon hit points become new VPLs

– Gather lighting from all VPLs

• In interactive setting, gather from only a subset of VPLs

– Can pick VPLs from reflective shadow map

[Keller 97]

[Dachsbacher 06]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Light Simplification

• VPL based techniques

– Pros:

• Very fast when VPLs stored in RSM

• Give good quality static renderings

– Cons:

• Often ignore VPL visibility

• Restricted VPL radius of influence

• Illumination singularities near VPLs

• Temporal coherence issues from singularities

Incrementally refined VPLs

[Laine et al. 07]

Singularities near VPLs

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Light Simplification

• Improving VPL techniques

– Light cuts [Walter et al. 05]

• Use an extremely large set of point light

• For any point, use important once; cluster others

• Create a graph of clusters at various levels; pick cut path

– Geometry cuts (e.g., [Hollander 11])

• Clustering & cuts, but selecting good LoDs for rendering

– Require care for good GPU implementation

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Light Simplification

• Adding visibility: Imperfect Shadows

– High quality visibility not needed for indirect

• Render coarse shadow map for each VPL

• Render simultaneously (send part of geom to each map)

• But shadow map bias affects touching surfaces

– Reduces SM render costs

– Does not reduce SM lookup costs

– Could use clustered visibility to reduce lookups

Imperfect Shadow Maps

[Ritschel et al. 08]

Clustered Visibility

[Dong et al. 09]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Light Simplification

• Add de-noising pass

– E.g., A “final gather” type pass

– Example: Light Propagation Volumes

• Sample lots and lots of VPLs

• Project them into SH basis stored on lattice

• Interpolate, as in irradiance volumes [Greger 98]

– LPVs also add propagation steps

• Allows illumination to diffuse within lattice

Cascaded LPVs

[Kaplanyan10]

Radiance Hints

[Papaioannou 11]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Light Simplification

• Avoid VPL singularities

– Remove VPL clamp bias

• Approx. residual in screen space

• Add in computed residual

• Repeat as needed or until convergence

– Removes VPL temporal incoherence

• Adds a sizable overhead

[Novak et al. 10]

+

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Ways To Approach Problem?

• Precompute approximate lighting

• Simplify lighting equations

• Simplify geometry or lights

• Reuse data to amortize computations

– Avoid redundant computations, interpolate between nearby results

• Brute force

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Data Reuse

• Many, many such techniques

– Radiosity (single sample per patch)

– Irradiance volume (interpolate samples)

– Render cache (reproject from last frame)

– (Ir)radiance caching (reuse sample when

sufficiently similar)

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Data Reuse

• Interleaved sampling

– Use different samples in adjacent pixels

– Use all samples from nearby pixels

• Assumes slow change of illumination

– Used in many spaces for many ray types

• Screen space

• Hemisphere (for selecting random rays)

[Wald et al. 02]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Data Reuse

• Render at low resolution

– Upsample in screen space via interpolation

• Significantly cheaper, but much worse aliasing

– Alternatively, geometry aware upsample

• Commonly done with a bilateral filter

• Idea: avoid filtering over edges, blur elsewhere

[Bauszat et al. 11]

At low res

[Yang et al. 08]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Data Reuse

• Render at multiple resolutions

– Upsample in screen space

• Use higher resolution data when available

• Can use fixed or adaptive multi-resolution

– Adaptive techniques

• Use some metric to identify regions that change fast

• Sample these regions more finely

• Significant savings by sampling coarsely when

feasible

[Nichols et al. 09]

[Hoang 10][Nichols 10]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Data Reuse

• Caching Techniques

– Interactive versions of (ir)radiance caching

• Leverage smooth changes in lighting

• Only add new samples near discontinuities

• Can reuse cache points between frames

• Enables good quality even with few samples per

frame

[Gautron et al. 05]

[Krivanek et al. 05]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Combine Many Methods

• Pick best quality / speed tradeoff

– Might sample illumination at points

– Gather on a crude proxy geometry

– Use coarse sampling of geometry

– Upsample to render resolution

• Interpolation in object space

• Clever mapping techniques to full res geometry

– Tradeoff may change between generations
Enlighten2

[Martin & Einarsson 10]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Ways To Approach Problem?

• Precompute approximate lighting

• Simplify lighting equations

• Simplify geometry or lights

• Reuse data to amortize computations

• Brute force

– Sometimes simple algorithms parallelize best!

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Ray Trace!

• Modern ray tracers quite fast

– 100 M+ rays / sec per core on CPU

– GPU performance faster

– Simply throw rays at rendering

– Pro: Simple coding (using the RT)

– Con: Building acceleration structures

• Difficult for dynamic scenes [Parker et al.10]

[Djeu et al.07]

[Zhou et al.08]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Ray Trace!

• Selective ray tracing

– Only for rays tough to compute other ways

• Rays through specular interactions

• Multi-bounce diffuse illumination

– Traditional rasterization & shadow map

• To compute initial bounces

– Can simultaneously use CPU & GPU

[McGuire and Luebke 09]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Micro Rendering

• Rasterize visibility at pixels

– Represent scene as points

– Render hemispherical view per sample

• Computes visibility

• Computes incident illumination

• Can consider varying BRDFs

– Con: Only on the edge of interactivity

• But can use non-brute force techniques to speed up

[Ritschel et al. 09]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Ways To Approach Problem?

• Precompute approximate lighting

• Simplify lighting equations

• Simplify geometry or lights

• Reuse data to amortize computations

• Brute force

• Bonus: Non-diffuse Global Illumination

– Have mostly focused on diffuse & glossy GI

– Same types of techniques work for other light interactions

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Specular Global Illumination

Multi-Res Sampling

[Wyman and Nichols 09]

Simplified sampling

along eye rays

[Hu et al. 10]

Voxel Based Sampling

[Cao et al. 10]

Propagation

through voxels

[Ihrke et al. 07]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Shadows in Participating Media

Voxel Based Sampling

[Wyman 11]

Adaptive Sampling

(of shadow map)

[Billeter et al. 10]

Reformulate Lighting Eq.

[Chen et al. 11]

Coarser Sampling

with Upsampling

[Engelhardt 10]

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Summary

• Lots of work on interactive GI

• Challenge:

– Access geometry & light from all over scene… efficiently

– Smoothly sampling rendering equation

• Approaches:

– Simplify equations, geometry & lights; amortization

– Easier to do this in a flexible pipeline

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Questions?

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Beyond Programmable Shading Course, ACM SIGGRAPH 2011

