
Category: Real-Time Graphics Applications
poster

RG01
contact name

Ethan Kerzner: ethan-kerzner@uiowa.edu

Overview

The fast and accurate rendering of transparent objects is an open problem in computer
graphics as it necessitates expensive fragment sorting on the GPU. We present initial
findings in optimizing existing order-independent transparency (OIT) algorithms by reducing
costly global thread synchronization. We leverage these improvements in a novel application
of OIT to ballistic simulations used in vulnerability/lethality (V/L) analysis software.

V/L Analysis

V/L analysis uses ballistic simulations to evaluate threat-target interactions and plan live-fire testing.
Although ballistic simulations were previously too costly for real-time applications, by applying
state-of-the-art OIT algorithms from computer graphics, real-time ballistic simulations are now
within reach.

In particular, optical transparency computes the light absorbed as photons pass through the
environment, whereas ballistic simulation computes the energy absorbed as projectiles pass
through an object. In each case, absorbance is a function of object thickness. Optical transparency,
for instance, computes absorbance using Beer’s Law [Suffern 07]. Ballistic penetration also follows a
similar type of exponential decay; however, the penetration equations are derived empirically and
are typically functions of material properties and threat parameters including size, weight, and
velocity [Butler and Stephens 07].

Reducing Global Contention

We reduce the need for global atomic synchronization by assigning regions of memory for each primitive rather than for each
fragment. In our Primitive Allocated Linked List (PALL), the geometry shader allocates memory for each primitive. Specifically,
the screen space bounds of each primitive provide a maximum number of fragments that can be generated. Fragment shaders
then construct the linked list while using a memory address passed from the geometry shader. As a result, this approach
distributes the cost of atomic operations across the fragments generated by each primitive.

Per-Pixel Linked Lists for OIT

New API features allowing for atomic memory operations and arbitrary memory access in shaders enable GPU-
optimized dynamic data structures such as per-pixel linked lists (PPLL) [Yang et al. 10]. The figure above illustrates the
construction of PPLL, which uses a single global atomic counter to allocate memory in the global fragment buffer.

Future Work

As we move toward our goal of real-time ballistic simulations,
we will perform a comprehensive analysis of modern OIT
algorithms in this context. Additionally, we will compare the
performance and accuracy tradeoffs between raster-based
transparency and ray tracing before moving our work from
research prototype to production-grade software.

A Novel Optimization & Application of Order-Independent Transparency
Lee A. Butler

U.S. Army Research Laboratory

Ethan Kerzner
Department of Computer Science

University of Iowa

Chris Wyman
Department of Computer Science

University of Iowa

The performance of PALL and PPLL on an NVIDIA GeForce GTX 690
using OpenGL 4.3. When PALL and PPLL use the same counters, PALL is
consistently faster than PPLL. Furthermore, PALL performance is on par
with PPLL when PPLL uses the fastest atomic counters. Unfortunately,
PALL cannot use the fastest atomic counters as they do not provide
atomic add operations, only atomic increment.

References

[Butler and Stephens 07] L. Butler & A. Stephens. Bullet Ray Vision. In IEEE Symposium
 on Interactive Ray Tracing, 2007.

[Suffern 07] K. Suffern. Ray Tracing From the Ground Up. A K Peters, Ltd. Wellesley, MA, 2007.

[Yang et al. 10] J. Yang, J. Hensley, H. Grün, & N. Thibieroz. Real-Time Concurrent Linked List
 Construction on the GPU. Computer Graphics Forum, 29:1297–1304, 2010.

Left: Shaders store fragments in a global buffer.
Right: Once all fragment information has been
stored, it can be sorted for shading computations.

